Graph Out-of-Distribution Generalization With Controllable Data Augmentation

被引:0
|
作者
Lu, Bin [1 ]
Zhao, Ze [1 ]
Gan, Xiaoying [1 ]
Liang, Shiyu [2 ]
Fu, Luoyi [3 ]
Wang, Xinbing [1 ]
Zhou, Chenghu [4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, John Hopcroft Ctr Comp Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100045, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Out-of-distribution generalization; graph neural network; domain generalization; data augmentation;
D O I
10.1109/TKDE.2024.3393109
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties. However, due to the selection bias of training and testing data (e.g., training on small graphs and testing on large graphs, or training on dense graphs and testing on sparse graphs), distribution deviation is widespread. More importantly, we often observe hybrid structure distribution shift of both scale and density, despite of one-sided biased data partition. The spurious correlations over hybrid distribution deviation degrade the performance of previous GNN methods and show large instability among different datasets. To alleviate this problem, we propose OOD-GMixup to jointly manipulate the training distribution with controllable data augmentation in metric space. Specifically, we first extract the graph rationales to eliminate the spurious correlations due to irrelevant information. Second, we generate virtual samples with perturbation on graph rationale representation domain to obtain potential OOD training samples. Finally, we propose OOD calibration to measure the distribution deviation of virtual samples by leveraging Extreme Value Theory, and further actively control the training distribution by emphasizing the impact of virtual OOD samples. Extensive studies on several real-world datasets on graph classification demonstrate the superiority of our proposed method over state-of-the-art baselines.
引用
收藏
页码:6317 / 6329
页数:13
相关论文
共 50 条
  • [1] DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization
    Sun, Xin
    Wang, Liang
    Liu, Qiang
    Wu, Shu
    Wang, Zilei
    Wang, Liang
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 2794 - 2805
  • [2] Selecting Augmentation Methods for Domain Generalization and Out-of-Distribution Detection Using Unlabeled Data
    Kucuktas, Ulku Tuncer
    Uysal, Fatih
    Hardalac, Firat
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [3] Individual and Structural Graph Information Bottlenecks for Out-of-Distribution Generalization
    Yang, Ling
    Zheng, Jiayi
    Wang, Heyuan
    Liu, Zhongyi
    Huang, Zhilin
    Hong, Shenda
    Zhang, Wentao
    Cui, Bin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 682 - 693
  • [4] Graph out-of-distribution generalization through contrastive learning paradigm
    Du, Hongyi
    Li, Xuewei
    Shao, Minglai
    KNOWLEDGE-BASED SYSTEMS, 2025, 315
  • [5] Targeted Data-driven Regularization for Out-of-Distribution Generalization
    Kamani, Mohammad Mahdi
    Farhang, Sadegh
    Mahdavi, Mehrdad
    Wang, James Z.
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 882 - 891
  • [6] An Efficient Data Augmentation Network for Out-of-Distribution Image Detection
    Lin, Cheng-Hung
    Lin, Cheng-Shian
    Chou, Po-Yung
    Hsu, Chen-Chien
    IEEE ACCESS, 2021, 9 : 35313 - 35323
  • [7] Causal softmax for out-of-distribution generalization
    Luo, Jing
    Zhao, Wanqing
    Peng, Jinye
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [8] Deep Relevant Feature Focusing for Out-of-Distribution Generalization
    Wang, Fawu
    Zhang, Kang
    Liu, Zhengyu
    Yuan, Xia
    Zhao, Chunxia
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 245 - 253
  • [9] Data Distribution Transfer for Out Of Distribution Generalization
    Wang, Fawu
    Li, Ruizhe
    Zhang, Kang
    Yuan, Xia
    Zhao, Chunxia
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [10] Unlock the Potential of Counterfactually-Augmented Data in Out-Of-Distribution Generalization
    Fan, Caoyun
    Chen, Wenqing
    Tian, Jidong
    Li, Yitian
    He, Hao
    Jin, Yaohui
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238