ScADSATGRN: An Adaptive Diffusion Structure-Aware Transformer Based Method Inferring Gene Regulatory Networks from Single-Cell Transcriptomic Data

被引:0
|
作者
Yuan, Lin [1 ,2 ,3 ]
Zhao, Ling [1 ,2 ,3 ]
Li, Zhujun [4 ]
Hu, Chunyu [1 ,2 ,3 ]
Zhang, Shoukang [1 ,2 ,3 ]
Wang, Xingang [1 ,2 ,3 ]
Geng, Yushui [1 ,2 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Comp Sci Ctr, Key Lab Comp Power Network & Informat Secur, Minist Educ,Shandong Acad Sci, Jinan, Peoples R China
[2] Qilu Univ Technol, Fac Comp Sci & Technol, Shandong Engn Res Ctr Big Data Appl Technol, Shandong Acad Sci, Jinan, Peoples R China
[3] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan, Peoples R China
[4] Jinan Springs Patent & Trademark Off, Jinan, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT II, ICIC 2024 | 2024年 / 14882卷
基金
中国国家自然科学基金;
关键词
Gene regulatory networks; scRNA-seq; Transformer; GNN;
D O I
10.1007/978-981-97-5692-6_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene regulatory networks unveil the interactions and regulatory relationships between genes, offering profound insights into cellular functional mechanisms. Utilizing single-cell RNA sequencing (scRNA-seq) data, we can take advantage of unprecedented opportunities to reconstruct gene regulatory networks (GRNs) at ultra-fine resolution, thereby uncovering intricate details of gene regulation. However, the current accuracy of using single-cell transcriptome data to infer gene regulatory networks needs to be improved. Therefore, in this article, we introduce the Transformer concept into the inference of gene regulatory networks. We propose a graph neural network model based on the Transformer architecture. The model combines GNN with Transformers to learn graph-structured data, enabling it to capture global within graph information. Compared with several existing methods, our model demonstrates superior performance across seven scRNA-seq datasets containing four types of ground truth networks. This facilitates the study of gene regulatory networks.
引用
收藏
页码:347 / 356
页数:10
相关论文
共 50 条
  • [31] scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data
    Wei Vivian Li
    Yanzeng Li
    Genomics,Proteomics & Bioinformatics, 2021, (03) : 475 - 492
  • [32] Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
    Wang, Jiacheng
    Chen, Yaojia
    Zou, Quan
    PLOS GENETICS, 2023, 19 (09):
  • [33] Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments
    Raharinirina, N. Alexia
    Peppert, Felix
    von Kleist, Max
    Schuette, Christof
    Sunkara, Vikram
    PATTERNS, 2021, 2 (09):
  • [34] Deep learning for inferring gene relationships from single-cell expression data
    Yuan, Ye
    Bar-Joseph, Ziv
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 27151 - 27158
  • [35] Boosting single-cell gene regulatory network reconstruction via bulk-cell transcriptomic data
    Shu, Hantao
    Ding, Fan
    Zhou, Jingtian
    Xue, Yexiang
    Zhao, Dan
    Zeng, Jianyang
    Ma, Jianzhu
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [36] Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data
    Xu, Junlin
    Lu, Changcheng
    Jin, Shuting
    Meng, Yajie
    Fu, Xiangzheng
    Zeng, Xiangxiang
    Nussinov, Ruth
    Cheng, Feixiong
    NUCLEIC ACIDS RESEARCH, 2025, 53 (05)
  • [37] scEGG: an exogenous gene-guided clustering method for single-cell transcriptomic data
    Hu, Dayu
    Guan, Renxiang
    Liang, Ke
    Yu, Hao
    Quan, Hao
    Zhao, Yawei
    Liu, Xinwang
    He, Kunlun
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [38] Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation
    Guo, Xiaobo
    Zhang, Ye
    Hu, Wenhao
    Tan, Haizhu
    Wang, Xueqin
    PLOS ONE, 2014, 9 (02):
  • [39] Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R
    Dong, Zhaorui
    Sun, Xiaoqiang
    STAR PROTOCOLS, 2022, 3 (03):
  • [40] Recovering Gene Interactions from Single-Cell Data Using Data Diffusion
    van Dijk, David
    Sharma, Roshan
    Nainys, Juozas
    Yim, Kristina
    Kathail, Pooja
    Carr, Ambrose J.
    Burdziak, Cassandra
    Moon, Kevin R.
    Chaffer, Christine L.
    Pattabiraman, Diwakar
    Bierie, Brian
    Mazutis, Linas
    Wolf, Guy
    Krishnaswamy, Smita
    Pe'er, Dana
    CELL, 2018, 174 (03) : 716 - +