Raman Spectroscopy in the Characterization of Food Carotenoids: Challenges and Prospects

被引:1
作者
Kolasinac, Stefan M. [1 ]
Pecinar, Ilinka [1 ]
Gajic, Rados [2 ]
Mutavdzic, Dragosav [3 ]
Stevanovic, Zora P. Dajic [1 ]
机构
[1] Univ Belgrade, Fac Agr, Dept Agrobot, Nemanjina 6, Belgrade 11080, Serbia
[2] Inst Phys, Ctr Solid State Phys & New Mat, POB 68,Pregrev 118, Belgrade 11080, Serbia
[3] Univ Belgrade, Inst Multidisciplinary Res, Kneza Viseslava 1, Belgrade 11030, Serbia
关键词
Raman spectroscopy; AI-assisted spectroscopy; carotenoids; food; RESONANCE RAMAN; FT-RAMAN; BETA-CAROTENE; MAIZE KERNELS; SPECTRA; FRUITS; SCATTERING; RECOGNITION; LYCOPENE; TISSUE;
D O I
10.3390/foods14060953
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This paper presents an overview of the application of Raman spectroscopy (RS) in characterizing carotenoids, which have recently gained attention due to new findings on their health-promoting effects and rising demand in the food, pharmaceutical, and cosmetic industries. The backbone structure in the form of a polyene chain makes carotenoids sensitive to Raman spectroscopy, mainly due to the stretching vibrations of their conjugated double bonds. Raman spectroscopy is increasingly used in agricultural and food sciences and technologies as it is a non-preparative, environmentally friendly, fast and efficient method for characterizing target analytes. The application of RS in the qualitative and quantitative analysis of carotenoids requires the careful selection and adjustment of various instrument parameters (e.g., laser wavelength, laser power, spectral resolution, detector type, etc.) as well as performing complex chemometric modeling to interpret the Raman spectra. Most of the studies covered in this review focus more on qualitative than quantitative analysis. The most frequently used laser wavelengths are 1064, 785, and 532 nm, while 633 nm is the least used. Considering the sensitivity and complexity of RS, the present study focuses on the specific and critical points in the analysis of carotenoids by RS. The main methodological and experimental principles in the study of food carotenoids by RS are discussed and best practices recommended, while the future prospects and expectations for a wider application of RS, especially in food quality assessment, are emphasized. New Raman techniques such as Spatially Offset Raman Spectroscopy (SORS), Coherent Anti-Stokes Raman Spectroscopy (CARS) and Stimulated Raman Scattering Spectroscopy (SRS), as well as the application of artificial intelligence, are also described in the context of carotenoids analysis.
引用
收藏
页数:51
相关论文
共 118 条
[1]  
Adar F, 2013, SPECTROSCOPY-US, V28, P12
[2]   High-Throughput Phenotyping Approach for Screening Major Carotenoids of Tomato by Handheld Raman Spectroscopy Using Chemometric Methods [J].
Akpolat, Hacer ;
Barineau, Mark ;
Jackson, Keith A. ;
Akpolat, Mehmet Z. ;
Francis, David M. ;
Chen, Yu-Ju ;
Rodriguez-Saona, Luis E. .
SENSORS, 2020, 20 (13) :1-13
[3]   Development of a spatially offset Raman spectroscopy probe for monitoring pharmaceutical drying [J].
Al-Attili, Mais ;
Ferreira, Carla ;
Price, Chris ;
Faulds, Karen ;
Chen, Yi-Chieh .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 192 :510-520
[4]   A Greener HPTLC Approach for the Determination of β-Carotene in Traditional and Ultrasound-Based Extracts of Different Fractions of Daucus carota (L.), Ipomea batatas (L.), and Commercial Formulation [J].
Alqarni, Mohammed H. ;
Alam, Prawez ;
Alam, Aftab ;
Ali, Abuzer ;
Foudah, Ahmed I. ;
Alshehri, Sultan ;
Ghoneim, Mohammed M. ;
Shakeel, Faiyaz .
AGRONOMY-BASEL, 2021, 11 (12)
[5]  
[Anonymous], 2022, How to choose your lasers for Raman spectroscopy
[6]   Advances in Biomedical Raman Microscopy [J].
Antonio, Karen A. ;
Schultz, Zachary D. .
ANALYTICAL CHEMISTRY, 2014, 86 (01) :30-46
[7]   Deep (offset) non-invasive Raman spectroscopy for the evaluation of food and beverages-A review [J].
Arroyo-Cerezo, Alejandra ;
Jimenez-Carvelo, Ana M. ;
Gonzalez-Casado, Antonio ;
Koidis, Anastasios ;
Cuadros-Rodriguez, Luis .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2021, 149
[8]   A light-mediated study of carotenoids in carrots (Daucus carota) using resonance Raman spectroscopy [J].
Badgujar, Pooja Manik ;
Wang, Yu-Chun ;
Cheng, Chia-Liang .
JOURNAL OF RAMAN SPECTROSCOPY, 2021, 52 (12) :2609-2620
[9]   Determination of lycopene and β-carotene content in tomato fruits and related products:: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy [J].
Baranska, M. ;
Schuetz, W. ;
Schulz, H. .
ANALYTICAL CHEMISTRY, 2006, 78 (24) :8456-8461
[10]   Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy [J].
Baranski, R ;
Baranska, M ;
Schulz, H .
PLANTA, 2005, 222 (03) :448-457