Search for Correlations Between the Results of the Density Functional Theory and Hartree-Fock Calculations Using Neural Networks and Classical Machine Learning Algorithms

被引:0
作者
Normatov, Saadiallakh [1 ]
Nesterov, Pavel V. [1 ]
Aliev, Timur A. [1 ]
Timralieva, Alexandra A. [1 ]
Novikov, Alexander S. [1 ]
Skorb, Ekaterina V. [1 ]
机构
[1] ITMO Univ, Infochem Sci Ctr, St Petersburg 191002, Russia
来源
ACS OMEGA | 2025年 / 10卷 / 06期
关键词
RECOGNITION; POTENTIALS; PROGRAM; DFT;
D O I
10.1021/acsomega.4c09861
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work proposes several machine learning models that predict B3LYP-D4/def-TZVP outputs from HF-3c outputs for supramolecular structures. The data set consists of 1031 entries of dimer, trimer, and tetramer cyclic structures, containing both molecules with heteroatoms in the ring and without. Six quantum chemistry descriptors and features are calculated by using both computational methods: Gibbs energy, electronic energy, entropy, enthalpy, dipole moment, and band gap. Statistical analysis shows a good correlation between energy properties and bad correlation only for the dipole moment. Machine learning models are separated into three groups: linear, tree-based, and neural networks. The best models for the prediction of density functional theory features are LASSO for linear, XGBoost for tree-based, and single-layer perceptron for neural networks with energy-related features having the best prediction values and dipole moment having the worst.
引用
收藏
页码:5919 / 5933
页数:15
相关论文
共 59 条
[1]  
Abqorunnisa F., 2023, BAREKENG J MATH ITS, V17, P0037, DOI [10.30598/barekengvol17iss1pp0037-0042, DOI 10.30598/BAREKENGVOL17ISS1PP0037-0042]
[2]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[3]  
Ali S., 2024, ARXIV
[4]   Designed assembly and disassembly of DNA in supramolecular structure: From ion regulated nuclear formation and machine learning recognition to running DNA cascade [J].
Aliev, Timur A. ;
Timralieva, Alexandra A. ;
Kurakina, Tatiana A. ;
Katsuba, Konstantin E. ;
Egorycheva, Yulia A. ;
Dubovichenko, Mikhail V. ;
Kutyrev, Maxim A. ;
Shilovskikh, Vladimir V. ;
Orekhov, Nikita ;
Kondratyuk, Nikolay ;
Semenov, Sergey N. ;
Kolpashchikov, Dmitry M. ;
Skorb, Ekaterina V. .
NANO SELECT, 2022, 3 (11) :1526-1536
[5]   Automating hyperparameter optimization in geophysics with Optuna: A comparative study [J].
Almarzooq, Hussain ;
bin Waheed, Umair .
GEOPHYSICAL PROSPECTING, 2024, 72 (05) :1778-1788
[6]  
[Anonymous], 2015, PREPRINT
[7]  
Ansel J, 2024, PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS 2024, VOL 2, P929, DOI 10.1145/3620665.3640366
[8]   Δ-Quantum machine-learning for medicinal chemistry [J].
Atz, Kenneth ;
Isert, Clemens ;
Boecker, Markus N. A. ;
Jimenez-Luna, Jose ;
Schneider, Gisbert .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (18) :10775-10783
[9]  
Bergman E., 2024, ARXIV
[10]   Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences [J].
Bochevarov, Art D. ;
Harder, Edward ;
Hughes, Thomas F. ;
Greenwood, Jeremy R. ;
Braden, Dale A. ;
Philipp, Dean M. ;
Rinaldo, David ;
Halls, Mathew D. ;
Zhang, Jing ;
Friesner, Richard A. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (18) :2110-2142