Estimation of a room temperature magnetic refrigeration insights from ab-initio calculations and Monte Carlo simulations: TbGdO3 perovskite

被引:0
作者
Kadim, G. [1 ]
Masrour, R. [1 ]
机构
[1] Sidi Mohammed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Lab Solid Phys, BP 1796, Fes, Morocco
关键词
Cesium/rubidium gadolinium oxide; Terbium gadolinium oxide; Electronic properties and magnetic properties; Magnetocaloric effect; First principles calculations and Monte Carlo; simulation;
D O I
10.1016/j.cocom.2025.e01028
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The magnetocaloric, structural, electronic, magnetic and magnetocaloric properties of TbGdO3 are investigated using GGA-PBE approximation. The TbGdO3 compound has a metallic character and ferrimagnetic behavior. The magnetic properties have been found for different magnetic fields using Monte Carlo simulation. The maximum of magnetic entropy changes is 15.73 J kg- 1 K- 1 for H = 4T. Terbium gadolinium oxide exhibit significant magnetic entropy changes induced by low magnetic field variations at room temperature, making them highly suitable for active magnetic refrigerant (AMR) material and spintronic applications in household settings.
引用
收藏
页数:5
相关论文
共 28 条
[1]  
Abdulateef J.M., Sopian K., Alghoul M.A., Sulaiman M.Y., Review on solar-driven ejector refrigeration technologies, Renew. Sustain. Energy Rev., 13, 6-7, pp. 1338-1349, (2009)
[2]  
Selvaraj D.A., Victor K., Vapour absorption refrigeration system for rural cold storage: a comparative study, Environ. Sci. Pollut. Control Ser., 28, 26, pp. 34248-34258, (2021)
[3]  
Bolaji B.O., Huan Z., Ozone depletion and global warming: case for the use of natural refrigerant–a review, Renew. Sustain. Energy Rev., 18, pp. 49-54, (2013)
[4]  
Pecharsky V.K., Gschneidner K.A., Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn Mater., 200, 1-3, pp. 44-56, (1999)
[5]  
Gomez J.R., Garcia R.F., Catoira A.D.M., Gomez M.R., Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration, Renew. Sustain. Energy Rev., 17, pp. 74-82, (2013)
[6]  
Warburg E., Magnetische untersuchungen, Ann. Phys., 249, 5, pp. 141-164, (1881)
[7]  
Drake F., Purvis M., Hunt J., Meeting the environmental challenge: a case of win–win or lose–win, A study of the UK baking and refrigeration industries, Bus. Strat. Environ., 13, 3, pp. 172-186, (2004)
[8]  
Matizamhuka W., The impact of magnetic materials in renewable energy-related technologies in the 21<sup>st</sup> century industrial revolution: the case of South Africa, Adv. Mater. Sci. Eng., 2018, (2018)
[9]  
Kadim G., Masrour R., Jabar A., Magnetocaloric effect, electronic and magnetic properties of Ba<sub>1-x</sub>Sr<sub>x</sub>FeO<sub>3</sub> barium-strontium ferrites: Monte Carlo simulations and comparative study between TB-mBJ and GGA+ U, Mater. Today Commun., 26, (2021)
[10]  
Kadim G., Masrour R., Jabar A., Hlil E.K., First principal calculation and Monte Carlo simulations of the Magnetocaloric effect, Electronic and Magnetic properties in perovskite oxide Pr<sub>0.65</sub>Sr<sub>0.35</sub>MnO<sub>3</sub>, IOP Conf. Ser. Mater. Sci. Eng., 1160, 1, (2021)