Combining Euclidean Alignment and Data Augmentation for BCI decoding

被引:0
作者
Rodrigues, Gustavo H. [1 ]
Aristimunha, Bruno [2 ,3 ]
Chevallier, Sylvain [2 ]
de Camargo, Raphael Y. [3 ]
机构
[1] Univ Sao Paulo, Sao Paulo, Brazil
[2] Univ Paris Saclay, Inria TAU Team, LISN, CNRS, Orsay, France
[3] Fed Univ ABC UFABC, Santo Andre, SP, Brazil
来源
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024 | 2024年
基金
巴西圣保罗研究基金会;
关键词
Neural Networks; Brain-Computer Interfaces; Data Augmentation; Euclidean Alignment; EEG; CLASSIFICATION;
D O I
10.23919/EUSIPCO63174.2024.10715237
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Automated classification of electroencephalogram (EEG) signals is complex due to their high dimensionality, non-stationarity, low signal-to-noise ratio, and variability between subjects. Deep neural networks (DNNs) have shown promising results for EEG classification, but the above challenges hinder their performance. Euclidean Alignment (EA) and Data Augmentation (DA) are two promising techniques for improving DNN training by permitting the use of data from multiple subjects, increasing the data, and regularizing the available data. In this paper, we perform a detailed evaluation of the combined use of EA and DA with DNNs for EEG decoding. We trained individual models and shared models with data from multiple subjects and showed that combining EA and DA generates synergies that improve the accuracy of most models and datasets. Also, the shared models combined with fine-tuning benefited the most, with an overall increase of 8.41% in classification accuracy.
引用
收藏
页码:1382 / 1387
页数:6
相关论文
共 50 条
[11]   Improving cross-session motor imagery decoding performance with data augmentation and domain adaptation [J].
Guo, Shuai ;
Wang, Yi ;
Liu, Yuang ;
Zhang, Xin ;
Tang, Baoping .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 106
[12]   I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks [J].
Kang, Taeho ;
Chen, Yiyu ;
Wallraven, Christian .
JOURNAL OF NEURAL ENGINEERING, 2024, 21 (06)
[13]   Connectivity steered graph Fourier transform for motor imagery BCI decoding [J].
Georgiadis, K. ;
Laskaris, N. ;
Nikolopoulos, S. ;
Kompatsiaris, I .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (05)
[14]   A Strong and Simple Deep Learning Baseline for BCI Motor Imagery Decoding [J].
El Ouahidi, Yassine ;
Gripon, Vincent ;
Pasdeloup, Bastien ;
Bouallegue, Ghaith ;
Farrugia, Nicolas ;
Lioi, Giulia .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 :3338-3347
[15]   A Novel Data Augmentation Approach Using Mask Encoding for Deep Learning-Based Asynchronous SSVEP-BCI [J].
Ding, Wenlong ;
Liu, Aiping ;
Guan, Ling ;
Chen, Xun .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 :875-886
[16]   A toolbox for decoding BCI commands based on event-related potentials [J].
Reichert, Christoph ;
Sweeney-Reed, Catherine M. ;
Hinrichs, Hermann ;
Duerschmid, Stefan .
FRONTIERS IN HUMAN NEUROSCIENCE, 2024, 18
[17]   Decoding Covert Somatosensory Attention by a BCI System Calibrated With Tactile Sensation [J].
Yao, Lin ;
Sheng, Xinjun ;
Mrachacz-Kersting, Natalie ;
Zhu, Xiangyang ;
Farina, Dario ;
Jiang, Ning .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (08) :1689-1695
[18]   Microbial data augmentation combining feature extraction and transformer network [J].
Wen, Liu-Ying ;
Chen, Zhu ;
Xie, Xiao-Nan ;
Min, Fan .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (06) :2539-2550
[19]   Kernel-Based NPLS for Continuous Trajectory Decoding from ECoG Data for BCI Applications [J].
Engel, Sarah ;
Aksenova, Tetiana ;
Eliseyev, Andrey .
LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017), 2017, 10169 :417-426
[20]   A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter [J].
Liu, Shaopeng ;
Tian, Guohui ;
Xu, Yuan .
NEUROCOMPUTING, 2019, 338 :191-206