K-means Based Transfer Learning Algorithm

被引:0
作者
Du, Yuanyuan [1 ]
Li, Bo [1 ]
Quan, Zhonghua [2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Huangjiahu West Rd 2, Wuhan 430070, Peoples R China
[2] Deyang Vocat Coll Technol & Trade, Dept Intelligent Engn, Sanxingdui Ave 122, Deyang 618300, Sichuan, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV | 2023年 / 14089卷
关键词
Transfer Learning; Domain Adaptation; Clustering; K-means;
D O I
10.1007/978-981-99-4752-2_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Focused on the issue that most transfer learning methods ignore the intra-domain distribution structures of the target domain, an algorithm based on K-means (K-means Transfer Learning, KTL) is proposed to enhance the transfer learning performance of the classification algorithms. In view of the poor clustering behavior of K-means on non-convex data sets, the multi-core version of KTL is proposed by clustering data into more small clusters to better fit the non-convex distribution of data (MKTL, Multi-core K-means Transfer Learning). The experimental results show that MKTL achieves the best average accuracy in 3 datasets. Compared with the original methods (kNN, TCA, GFK, JDA), the performance of MKTL is improved by 2.5 similar to 12.8 percentage in high computational efficiency.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 26 条
  • [1] Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
  • [2] Integrating structured biological data by Kernel Maximum Mean Discrepancy
    Borgwardt, Karsten M.
    Gretton, Arthur
    Rasch, Malte J.
    Kriegel, Hans-Peter
    Schoelkopf, Bernhard
    Smola, Alex J.
    [J]. BIOINFORMATICS, 2006, 22 (14) : E49 - E57
  • [3] Caputo B, 2014, INT C CROSS LANG EV, P192, DOI DOI 10.1007/978-3-319-11382-118
  • [4] A novel multiseed nonhierarchical data clustering technique
    Chaudhuri, D
    Chaudhuri, BB
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1997, 27 (05): : 871 - 877
  • [5] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [6] Donahue J, 2014, PR MACH LEARN RES, V32
  • [7] Classifier Adaptation Based on Modified Label Propagation for Unsupervised Domain Adaptation
    Du, Yongjie
    Zhou, Deyun
    Xie, Yu
    Kong, Weiren
    Li, Xiaoyang
    Shi, Jiao
    Lei, Yu
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [8] Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias
    Fang, Chen
    Xu, Ye
    Rockmore, Daniel N.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1657 - 1664
  • [9] Gong BQ, 2012, PROC CVPR IEEE, P2066, DOI 10.1109/CVPR.2012.6247911
  • [10] Gopalan R, 2011, IEEE I CONF COMP VIS, P999, DOI 10.1109/ICCV.2011.6126344