Provable Preconditioned Plug-and-Play Approach for Compressed Sensing MRI Reconstruction

被引:0
作者
Hong, Tao [1 ]
Xu, Xiaojian [2 ]
Hu, Jason [2 ]
Fessler, Jeffrey A. [2 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Magnetic resonance imaging (MRI); noncartesian sampling; reconstruction; preconditioner; plug-and-play (PnP); SHRINKAGE-THRESHOLDING ALGORITHM; POLYNOMIAL PRECONDITIONERS; IMAGE-RECONSTRUCTION; REGULARIZATION; DENOISER; CONVERGENCE; MODELS; ADMM;
D O I
10.1109/TCI.2024.3477329
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Model-based methods play a key role in the reconstruction of compressed sensing (CS) MRI. Finding an effective prior to describe the statistical distribution of the image family of interest is crucial for model-based methods. Plug-and-play (PnP) is a general framework that uses denoising algorithms as the prior or regularizer. Recent work showed that PnP methods with denoisers based on pretrained convolutional neural networks outperform other classical regularizers in CS MRI reconstruction. However, the numerical solvers for PnP can be slow for CS MRI reconstruction. This paper proposes a preconditioned PnP (P(2)nP) method to accelerate the convergence speed. Moreover, we provide proofs of the fixed-point convergence of the P(2)nP iterates. Numerical experiments on CS MRI reconstruction with non-Cartesian sampling trajectories illustrate the effectiveness and efficiency of the P(2)nP approach.
引用
收藏
页码:1476 / 1488
页数:13
相关论文
共 74 条
  • [1] MoDL: Model-Based Deep Learning Architecture for Inverse Problems
    Aggarwal, Hemant K.
    Mani, Merry P.
    Jacob, Mathews
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 394 - 405
  • [2] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [3] Ahmad R, 2020, IEEE SIGNAL PROC MAG, V37, P105, DOI [10.1109/MSP.2019.2949470, 10.1109/msp.2019.2949470]
  • [4] An approximate Newton-type proximal method using symmetric rank-one updating formula for minimizing the nonsmooth composite functions
    Aminifard, Zohre
    Babaie-Kafaki, Saman
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (03) : 529 - 542
  • [5] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [6] An Improved Fast Iterative Shrinkage Thresholding Algorithm for Image Deblurring
    Bhotto, Md. Zulfiquar Ali
    Ahmad, M. Omair
    Swamy, M. N. S.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (03): : 1640 - 1657
  • [7] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [8] Plug-and-Play Unplugged: Optimization-Free Reconstruction Using Consensus Equilibrium
    Buzzard, Gregery T.
    Chan, Stanley H.
    Sreehari, Suhas
    Bouman, Charles A.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (03): : 2001 - 2020
  • [9] Plug-and-Play ADMM for Image Restoration: Fixed-Point Convergence and Applications
    Chan, Stanley H.
    Wang, Xiran
    Elgendy, Omar A.
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (01) : 84 - 98
  • [10] Score-based diffusion models for accelerated MRI
    Chung, Hyungjin
    Ye, Jong Chul
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 80