Cosmological inference including massive neutrinos from the matter power spectrum: Biases induced by uncertainties in the covariance matrix

被引:0
作者
Gouyou Beauchamps, S. [1 ,2 ,3 ]
Baratta, P. [1 ]
Escoffier, S. [1 ]
Gillard, W. [1 ]
Bel, J. [4 ]
Bautista, J. [1 ]
Carbone, C. [5 ]
机构
[1] Aix Marseille Univ, CNRS, CPPM, IN2P3, Marseille, France
[2] Inst Space Sci ICE, CSIC, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain
[3] Inst Estudis Espacials Catalunya IEEC, Carrer Gran Capita 2-4, Barcelona 08034, Spain
[4] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France
[5] Ist Astrofis Spaziale & Fis Cosm Milano, Via A Corti 12, I-20133 Milan, Italy
关键词
cosmological parameters; large-scale structure of Universe; SHRINKAGE ESTIMATION; PRECISION; ACCURATE; MODEL; GENERATION; CATALOGS; IMPACT;
D O I
10.1051/0004-6361/202347164
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Data analysis from upcoming large galaxy redshift surveys, such as Euclid and DESI, will significantly improve constraints on cosmological parameters. To optimally extract the maximum information from these galaxy surveys, it is important to control with a high level of confidence the uncertainty and bias arising from the estimation of the covariance that affects the inference of cosmological parameters. In this work, we address two different but closely related issues: (i) the sampling noise present in a covariance matrix estimated from a finite set of simulations and (ii) the impact on cosmological constraints of the non-Gaussian contribution to the covariance matrix of the power spectrum. We focussed on the parameter estimation obtained from fitting the full shape of the matter power spectrum in real space, using the Dark Energy and Massive Neutrino Universe (DEMNUni) N-body simulations. Parameter inference was done through Monte Carlo Markov chains. Regarding the first issue, we adopted two different approaches to reduce the sampling noise in the precision matrix that propagates in the parameter space: on the one hand, using an alternative estimator of the covariance matrix based on a non-linear shrinkage, NERCOME (which stands for Non-parametric Eigenvalue-Regularised COvariance Matrix Estimator); and, on the other hand, employing a method of fast generation of approximate mock catalogues, COVMOS. We find that NERCOME can significantly reduce the stochastic shifts of the posteriors of parameters, but at the cost of a systematic overestimation of the error bars on the cosmological parameters. We show that using a COVMOS covariance matrix estimated from a large number of realisations (10 000) results in unbiased cosmological constraints. Regarding the second issue, we quantified the impact on cosmological constraints of the non-Gaussian part of the power spectrum covariance purely coming from non-linear clustering. We find that when this term is neglected, both the uncertainties and best-fit values of the estimated parameters are affected for a scale cut k(max) > 0.2 h/Mpc.
引用
收藏
页数:21
相关论文
共 67 条
[1]   Generating log-normal mock catalog of galaxies in redshift space [J].
Agrawal, Aniket ;
Makiya, Ryu ;
Chiang, Chi-Ting ;
Jeong, Donghui ;
Saito, Shun ;
Komatsu, Eiichiro .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (10)
[2]   HALOGEN: a tool for fast generation of mock halo catalogues [J].
Avila, Santiago ;
Murray, Steven G. ;
Knebe, Alexander ;
Power, Chris ;
Robotham, Aaron S. G. ;
Garcia-Bellido, Juan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (02) :1856-1867
[3]   COVMOS: A new Monte Carlo approach for galaxy clustering analysis [J].
Baratta, Philippe ;
Bel, Julien ;
Gouyou Beauchamps, Sylvain ;
Carbone, Carmelita .
ASTRONOMY & ASTROPHYSICS, 2023, 673
[4]   High-precision Monte Carlo modelling of galaxy distribution [J].
Baratta, Philippe ;
Bel, Julien ;
Plaszczynski, Stephane ;
Ealet, Anne .
ASTRONOMY & ASTROPHYSICS, 2020, 633
[5]   Complete super-sample lensing covariance in the response approach [J].
Barreir, Alexandre ;
Krause, Elisabeth ;
Schmidt, Fabian .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (06)
[6]   Accurate cosmic shear errors: do we need ensembles of simulations? [J].
Barreira, Alexandre ;
Krause, Elisabeth ;
Schmidt, Fabian .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (10)
[7]   Detecting Neutrino Mass by Combining Matter Clustering, Halos, and Voids [J].
Bayer, Adrian E. ;
Villaescusa-Navarro, Francisco ;
Massara, Elena ;
Liu, Jia ;
Spergel, David N. ;
Verde, Licia ;
Wandelt, Benjamin D. ;
Viel, Matteo ;
Ho, Shirley .
ASTROPHYSICAL JOURNAL, 2021, 919 (01)
[8]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248
[9]   Massive neutrinos and the non-linear matter power spectrum [J].
Bird, Simeon ;
Viel, Matteo ;
Haehnelt, Martin G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 420 (03) :2551-2561
[10]   The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes [J].
Blas, Diego ;
Lesgourgues, Julien ;
Tram, Thomas .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (07)