Kromatic Quasisymmetric Functions

被引:0
作者
Marberg, Eric [1 ]
机构
[1] HKUST, Dept Math, Clear Water Bay, Hong Kong, Peoples R China
关键词
D O I
10.37236/13207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a construction for the kromatic symmetric function XG of a graph introduced by Crew, Pechenik, and Spirkl using combinatorial (linearly compact) Hopf algebras. As an application, we show that XG has a positive expansion into multifundamental quasisymmetric functions. We also study two related quasisymmetric q-analogues of XG, which are K-theoretic generalizations of the quasisymmetric chromatic function of Shareshian and Wachs. We classify exactly when one of these analogues is symmetric. For the other, we derive a positive expansion into symmetric Grothendieck functions when G is the incomparability graph of a natural unit interval order.
引用
收藏
页数:39
相关论文
共 22 条
  • [1] Combinatorial Hopf algebras and generalized Dehn-Sommerville relations
    Aguiar, M
    Bergeron, N
    Sottile, F
    [J]. COMPOSITIO MATHEMATICA, 2006, 142 (01) : 1 - 30
  • [2] Athanasiadis CA, 2015, ELECTRON J COMB, V22
  • [3] A Littlewood-Richardson rule for the K-theory of Grassmannians
    Buch, AS
    [J]. ACTA MATHEMATICA, 2002, 189 (01) : 37 - 78
  • [4] Crew L, 2023, Arxiv, DOI arXiv:2301.02177
  • [5] LOLLIPOP AND LARIAT SYMMETRIC FUNCTIONS
    Dahlberg, Samantha
    van Willigenburg, Stephanie
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 1029 - 1039
  • [6] Dieudonne Jean., 1973, Introduction to the theory of formal groups
  • [7] Incomparability graphs of (3+1)-free posets are s-positive
    Gasharov, V
    [J]. DISCRETE MATHEMATICS, 1996, 157 (1-3) : 193 - 197
  • [8] Grinberg D, 2020, Arxiv, DOI arXiv:1409.8356
  • [9] Guay-Paquet M, 2013, Arxiv, DOI arXiv:1306.2400
  • [10] Chromatic symmetric functions and H-free graphs
    Hamel, Angele M.
    Hoang, Chinh T.
    Tuero, Jake E.
    [J]. GRAPHS AND COMBINATORICS, 2019, 35 (04) : 815 - 825