Membrane and IrO2 Catalyst Conditioning of Proton Exchange Membrane Water Electrolysis by Applying Voltage

被引:0
|
作者
Akita, Itsuka [1 ,2 ]
Nara, Miyuki [2 ]
Koike, Kazuki [1 ,2 ]
Murakami, Takeharu [2 ]
Fujii, Katsushi [2 ]
Ogawa, Takayo [2 ]
Wada, Satoshi [2 ]
Ogura, Atsushi [1 ,3 ]
机构
[1] Meiji Univ, Grad Sch Sci & Technol, Dept Elect Engn, 1-1-1 Higashimita,Tama Ku, Kawasaki, Kanagawa 2148571, Japan
[2] RIKEN, Ctr Adv Photon, Photon Control Technol Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[3] Meiji Renewable Energy Lab, 1-1-1 Higashimita,Tama Ku, Kawasaki, Kanagawa 2148571, Japan
关键词
OXYGEN EVOLUTION CATALYSTS; ELECTROCATALYSTS; DEGRADATION; DURABILITY; TRANSPORT; KINETICS; HYDROGEN; STATE;
D O I
10.5796/electrochemistry.24-00132
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Proton exchange membrane water electrolysis (PEMWE) has gathered significant interest as a method for hydrogen production. A crucial step in optimizing PEMWE performance is a pre-treatment process known as "conditioning" or "break-in", during which a voltage or current is applied to the PEMWE prior to its actual operation. Despite its importance, the underlying mechanisms and improvements achieved through conditioning remain unclear. This study investigates the effects of conditioning on PEMWE, focusing on changes in the properties of the cation exchange polymer electrolyte membrane and the IrO2 oxygen evolution catalyst. Results show that membrane conductivity increases and the valency of Ir changes from +3 to +5 by voltage application. The valency changes of Ir occur in two distinct voltage regions (0.8-1.0 and 1.3-1.5 V vs. cathode (CE)) when the applied voltage remains below the threshold for water electrolysis. Despite the intentional introduction of valence changes through applied voltage, no significant changes in the I-V characteristics within the water electrolysis region (from 1.5 to 2.0 V vs. CE) are observed. This is likely due to the fact that, at least as observed in linear sweep voltammetry, the activation time of Ir is sufficiently rapid that even the sweep rate of 10 mV/s is sufficient for activation.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis
    Holzapfel, Peter
    Buehler, Melanie
    Chuyen Van Pham
    Hegge, Friedemann
    Boehm, Thomas
    McLaughlin, David
    Breitwieser, Matthias
    Thiele, Simon
    ELECTROCHEMISTRY COMMUNICATIONS, 2020, 110
  • [22] Direct kinetic loss analysis with hierarchy configuration of catalyst coated membrane in proton exchange membrane water electrolysis cell
    He, Yunlong
    Feng, Suyang
    Chen, Hui
    Liu, Yun
    Shi, Xiaodong
    Rao, Peng
    Li, Jing
    Wu, Xiao
    Huang, Shuyi
    Li, Ke
    Wang, Hao
    Tian, Xinlong
    Kang, Zhenye
    FUEL, 2025, 379
  • [23] Degradation studies of proton exchange membrane water electrolysis cells with low platinum group metals- Catalyst coating achieved by atomic layer deposition
    Batalla, B. Sanchez
    Laube, A.
    Hofer, A.
    Struckmann, T.
    Bachmann, J.
    Weidlich, C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (94) : 39719 - 39730
  • [24] Safety analysis of proton exchange membrane water electrolysis system
    Liu, Yuanxing
    Amin, Md. Tanjin
    Khan, Faisal
    Pistikopoulos, Efstratios N.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [25] Enhancing proton exchange membrane water electrolysis performance: Impact of iridium oxide catalyst ink dispersing methodology
    Kuang, Tianchao
    Huang, Jian
    Li, Jun
    Yang, Penglin
    Zhang, Liang
    Ye, Dingding
    Zhu, Xun
    Liao, Qiang
    JOURNAL OF POWER SOURCES, 2024, 606
  • [26] NiFeB anode catalyst for anion exchange membrane water electrolysis
    Faid, Alaa Y.
    Sunde, Svein
    MATERIALS LETTERS, 2022, 324
  • [27] The Role of Water in Vapor-fed Proton-Exchange-Membrane Electrolysis
    Fornaciari, Julie C.
    Gerhardt, Michael R.
    Zhou, Jie
    Regmi, Yagya N.
    Danilovic, Nemanja
    Bell, Alexis T.
    Weber, Adam Z.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
  • [28] Innovative Membrane Electrode Assembly (MEA) Fabrication for Proton Exchange Membrane Water Electrolysis
    Jung, Guo-Bin
    Chan, Shih-Hung
    Lai, Chun-Ju
    Yeh, Chia-Chen
    Yu, Jyun-Wei
    ENERGIES, 2019, 12 (21)
  • [29] Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly
    Faid, Alaa Y.
    Sunde, Svein
    ENERGY TECHNOLOGY, 2022, 10 (09)
  • [30] Advances and status of anode catalysts for proton exchange membrane water electrolysis technology
    Wu, Qiannan
    Wang, Yuannan
    Zhang, Kexin
    Xie, Zhoubing
    Sun, Ke
    An, Wei
    Liang, Xiao
    Zou, Xiaoxin
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (06) : 1025 - 1045