Diagnostic performance of deep learning for infectious keratitis: a systematic review and meta-analysis

被引:2
作者
Ong, Zun Zheng [1 ]
Sadek, Youssef [2 ]
Qureshi, Riaz [3 ,4 ]
Liu, Su-Hsun [3 ,4 ]
Li, Tianjing [3 ,4 ]
Liu, Xiaoxuan [5 ,6 ,7 ]
Takwoingi, Yemisi [8 ]
Sounderajah, Viknesh [9 ]
Ashrafian, Hutan [9 ]
Ting, Daniel S. W. [10 ,11 ]
Mehta, Jodhbir S. [10 ,11 ]
Rauz, Saaeha [1 ,5 ]
Said, Dalia G. [12 ,13 ]
Dua, Harminder S. [12 ,13 ]
Burton, Matthew J. [14 ,15 ,16 ]
Ting, Darren S. J. [1 ,5 ,11 ,12 ]
机构
[1] Sandwell & West Birmingham NHS Trust, Birmingham & Midland Eye Ctr, Birmingham, England
[2] Univ Birmingham, Coll Med & Hlth, Birmingham Med Sch, Birmingham, England
[3] Univ Coloradom, Dept Epidemiol, Anschutz Med Campus, Aurora, CO USA
[4] Univ Coloradom, Dept Epidemiol, Anschutz Med Campus, Aurora, CO USA
[5] Univ Birmingham, Inst fl ammat & Ageing, Birmingham B15 2TT, England
[6] Univ Hosp Birmingham NHS Fdn Trust, Dept Ophthalmol, Birmingham, England
[7] Hlth Data Res UK, London, England
[8] Univ Birmingham, Dept Appl Hlth Sci, Birmingham, England
[9] Imperial Coll London, Inst Global Hlth Innovat, London, England
[10] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore
[11] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, Singapore, Singapore
[12] Univ Nottingham, Sch Med, Acad Ophthalmol, Nottingham, England
[13] Queens Med Ctr, Dept Ophthalmol, Nottingham, England
[14] London Sch Hyg & Trop Med, Int Ctr Eye Hlth, London, England
[15] UCL, Moorfields Eye Hosp NHS Fdn Trust, London, England
[16] UCL Inst Ophthalmol, London, England
基金
英国惠康基金;
关键词
Artificial fi cial intelligence; Corneal infection; Corneal ulcer; Deep learning; Infectious keratitis; Microbial keratitis; FUNGAL KERATITIS; BACTERIAL; ACCURACY; DISEASES; IMAGES;
D O I
10.1016/j.eclinm.2024.102887
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Infectious keratitis (IK) is the leading cause of corneal blindness globally. Deep learning (DL) is an emerging tool for medical diagnosis, though its value in IK is unclear. We aimed to assess the diagnostic accuracy of DL for IK and its comparative accuracy with ophthalmologists. Methods In this systematic review and meta-analysis, we searched EMBASE, MEDLINE, and clinical registries for studies related to DL for IK published between 1974 and July 16, 2024. We performed meta-analyses using bivariate models to estimate summary sensitivities and specificities. fi cities. This systematic review was registered with PROSPERO (CRD42022348596). Findings Of 963 studies identified, fi ed, 35 studies (136,401 corneal images from >56,011 patients) were included. Most studies had low risk of bias (68.6%) and low applicability concern (91.4%) in all domains of QUADAS-2, except the index test domain. Against the reference standard of expert consensus and/or microbiological results (seven external validation studies; 10,675 images), the summary estimates (95% CI) for sensitivity and specificity fi city of DL for IK were 86.2% (71.6-93.9) - 93.9) and 96.3% (91.5-98.5). - 98.5). From 28 internal validation studies (16,059 images), summary estimates for sensitivity and specificity fi city were 91.6% (86.8-94.8) - 94.8) and 90.7% (84.8-94.5). - 94.5). Based on seven studies (4007 images), DL and ophthalmologists had comparable summary sensitivity [89.2% (82.2-93.6) - 93.6) versus 82.2% (71.5-89.5); - 89.5); P = 0.20] and specificity fi city [(93.2% (85.5-97.0) - 97.0) versus 89.6% (78.8-95.2); - 95.2); P = 0.45]. Interpretation DL models may have good diagnostic accuracy for IK and comparable performance to ophthalmologists. These fi ndings should be interpreted with caution due to the image-based analysis that did not account for potential correlation within individuals, relatively homogeneous population studies, lack of pre-specification fi cation of DL thresholds, and limited external validation. Future studies should improve their reporting, data diversity, external validation, transparency, and explainability to increase the reliability and generalisability of DL models for clinical deployment.
引用
收藏
页数:17
相关论文
共 77 条
[41]   Advances in the diagnosis of herpes simplex stromal necrotising keratitis: A feasibility study on deep learning approach [J].
Natarajan, Radhika ;
Matai, Hiren D. ;
Raman, Sundaresan ;
Kumar, Subham ;
Ravichandran, Swetha ;
Swaminathan, Samyuktha ;
Alex, John Sahaya Rani .
INDIAN JOURNAL OF OPHTHALMOLOGY, 2022, 70 (09) :3279-3283
[42]   Diagnostic performance of deep learning in infectious keratitis: a systematic review and meta-analysis protocol [J].
Ong, Zun Zheng ;
Sadek, Youssef ;
Liu, Xiaoxuan ;
Qureshi, Riaz ;
Liu, Su-Hsun ;
Li, Tianjing ;
Sounderajah, Viknesh ;
Ashrafian, Hutan ;
Ting, Daniel Shu Wei ;
Said, Dalia G. ;
Mehta, Jodhbir S. ;
Burton, Matthew J. ;
Dua, Harminder Singh ;
Ting, Darren Shu Jeng .
BMJ OPEN, 2023, 13 (05)
[43]   Predictors of Corneal Perforation or Need for Therapeutic Keratoplasty in Severe Fungal Keratitis A Secondary Analysis of the Mycotic Ulcer Treatment Trial II [J].
Prajna, N. Venkatesh ;
Krishnan, Tiruvengada ;
Rajaraman, Revathi ;
Patel, Sushila ;
Shah, Ranjeet ;
Srinivasan, Muthiah ;
Das, Manoranjan ;
Ray, Kathryn J. ;
Oldenburg, Catherine E. ;
McLeod, Stephen D. ;
Zegans, Michael E. ;
Acharya, Nisha R. ;
Lietman, Thomas M. ;
Rose-Nussbaumer, Jennifer .
JAMA OPHTHALMOLOGY, 2017, 135 (09) :987-991
[44]   Image-Based Differentiation of Bacterial and Fungal Keratitis Using Deep Convolutional Neural Networks [J].
Redd, Travis K. ;
Prajna, N. Venkatesh ;
Srinivasan, Muthiah ;
Lalitha, Prajna ;
Krishnan, Tiru ;
Rajaraman, Revathi ;
Venugopal, Anitha ;
Acharya, Nisha ;
Seitzman, Gerami D. ;
Lietman, Thomas M. ;
Keenan, Jeremy D. ;
Campbell, J. Peter ;
Song, Xubo .
OPHTHALMOLOGY SCIENCE, 2022, 2 (02)
[45]   Expert Performance in Visual Differentiation of Bacterial and Fungal Keratitis [J].
Redd, Travis K. ;
Prajna, N. Venkatesh ;
Srinivasan, Muthiah ;
Lalitha, Prajna ;
Krishnan, Tiru ;
Rajaraman, Revathi ;
Venugopal, Anitha ;
Lujan, Brandon ;
Acharya, Nisha ;
Seitzman, Gerami D. ;
Rose-Nussbaumer, Jennifer ;
Lietman, Thomas M. ;
Campbell, J. Peter ;
Keenan, Jeremy D. .
OPHTHALMOLOGY, 2022, 129 (02) :227-230
[46]   Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist [J].
Salameh, Jean-Paul ;
Bossuyt, Patrick M. ;
McGrath, Trevor A. ;
Thombs, Brett D. ;
Hyde, Christopher J. ;
Macaskill, Petra ;
Deeks, Jonathan J. ;
Leeflang, Mariska ;
Korevaar, Daniel A. ;
Whiting, Penny ;
Takwoingi, Yemisi ;
Reitsma, Johannes B. ;
Cohen, Jeremie F. ;
Frank, Robert A. ;
Hunt, Harriet A. ;
Hooft, Lotty ;
Rutjes, Anne W. S. ;
Willis, Brian H. ;
Gatsonis, Constantine ;
Levis, Brooke ;
Moher, David ;
McInnes, Matthew D. F. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 370
[47]   Accuracy of artificial intelligence model for infectious keratitis classification: a systematic review and meta-analysis [J].
Sarayar, Randy ;
Lestari, Yeni Dwi ;
Setio, Arnaud A. A. ;
Sitompul, Ratna .
FRONTIERS IN PUBLIC HEALTH, 2023, 11
[48]   Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study [J].
Seah, Jarrel C. Y. ;
Tang, Cyril H. M. ;
Buchlak, Quinlan D. ;
Holt, Xavier G. ;
Wardman, Jeffrey B. ;
Aimoldin, Anuar ;
Esmaili, Nazanin ;
Ahmad, Hassan ;
Hung Pham ;
Lambert, John F. ;
Hachey, Ben ;
Hogg, Stephen J. F. ;
Johnston, Benjamin P. ;
Bennett, Christine ;
Oakden-Rayner, Luke ;
Brotchie, Peter ;
Jones, Catherine M. .
LANCET DIGITAL HEALTH, 2021, 3 (08) :E496-E506
[49]   Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization [J].
Selvaraju, Ramprasaath R. ;
Cogswell, Michael ;
Das, Abhishek ;
Vedantam, Ramakrishna ;
Parikh, Devi ;
Batra, Dhruv .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :618-626
[50]   A novel artificial intelligence model for diagnosing Acanthamoeba keratitis through confocal microscopy [J].
Shareef, Omar ;
Soleimani, Mohammad ;
Tu, Elmer ;
Jacobs, Deborah ;
Ciolino, Joseph ;
Rahdar, Amir ;
Cheraqpour, Kasra ;
Ashraf, Mohammadali ;
Habib, Nabiha B. ;
Greenfield, Jason ;
Yousefi, Siamak ;
Djalilian, Ali R. ;
Saeed, Hajirah N. .
OCULAR SURFACE, 2024, 34 :159-164