Diagnostic performance of deep learning for infectious keratitis: a systematic review and meta-analysis

被引:0
作者
Ong, Zun Zheng [1 ]
Sadek, Youssef [2 ]
Qureshi, Riaz [3 ,4 ]
Liu, Su-Hsun [3 ,4 ]
Li, Tianjing [3 ,4 ]
Liu, Xiaoxuan [5 ,6 ,7 ]
Takwoingi, Yemisi [8 ]
Sounderajah, Viknesh [9 ]
Ashrafian, Hutan [9 ]
Ting, Daniel S. W. [10 ,11 ]
Mehta, Jodhbir S. [10 ,11 ]
Rauz, Saaeha [1 ,5 ]
Said, Dalia G. [12 ,13 ]
Dua, Harminder S. [12 ,13 ]
Burton, Matthew J. [14 ,15 ,16 ]
Ting, Darren S. J. [1 ,5 ,11 ,12 ]
机构
[1] Sandwell & West Birmingham NHS Trust, Birmingham & Midland Eye Ctr, Birmingham, England
[2] Univ Birmingham, Coll Med & Hlth, Birmingham Med Sch, Birmingham, England
[3] Univ Coloradom, Dept Epidemiol, Anschutz Med Campus, Aurora, CO USA
[4] Univ Coloradom, Dept Epidemiol, Anschutz Med Campus, Aurora, CO USA
[5] Univ Birmingham, Inst fl ammat & Ageing, Birmingham B15 2TT, England
[6] Univ Hosp Birmingham NHS Fdn Trust, Dept Ophthalmol, Birmingham, England
[7] Hlth Data Res UK, London, England
[8] Univ Birmingham, Dept Appl Hlth Sci, Birmingham, England
[9] Imperial Coll London, Inst Global Hlth Innovat, London, England
[10] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore
[11] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, Singapore, Singapore
[12] Univ Nottingham, Sch Med, Acad Ophthalmol, Nottingham, England
[13] Queens Med Ctr, Dept Ophthalmol, Nottingham, England
[14] London Sch Hyg & Trop Med, Int Ctr Eye Hlth, London, England
[15] UCL, Moorfields Eye Hosp NHS Fdn Trust, London, England
[16] UCL Inst Ophthalmol, London, England
基金
英国惠康基金;
关键词
Artificial fi cial intelligence; Corneal infection; Corneal ulcer; Deep learning; Infectious keratitis; Microbial keratitis; FUNGAL KERATITIS; BACTERIAL; ACCURACY; DISEASES; IMAGES;
D O I
10.1016/j.eclinm.2024.102887
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Infectious keratitis (IK) is the leading cause of corneal blindness globally. Deep learning (DL) is an emerging tool for medical diagnosis, though its value in IK is unclear. We aimed to assess the diagnostic accuracy of DL for IK and its comparative accuracy with ophthalmologists. Methods In this systematic review and meta-analysis, we searched EMBASE, MEDLINE, and clinical registries for studies related to DL for IK published between 1974 and July 16, 2024. We performed meta-analyses using bivariate models to estimate summary sensitivities and specificities. fi cities. This systematic review was registered with PROSPERO (CRD42022348596). Findings Of 963 studies identified, fi ed, 35 studies (136,401 corneal images from >56,011 patients) were included. Most studies had low risk of bias (68.6%) and low applicability concern (91.4%) in all domains of QUADAS-2, except the index test domain. Against the reference standard of expert consensus and/or microbiological results (seven external validation studies; 10,675 images), the summary estimates (95% CI) for sensitivity and specificity fi city of DL for IK were 86.2% (71.6-93.9) - 93.9) and 96.3% (91.5-98.5). - 98.5). From 28 internal validation studies (16,059 images), summary estimates for sensitivity and specificity fi city were 91.6% (86.8-94.8) - 94.8) and 90.7% (84.8-94.5). - 94.5). Based on seven studies (4007 images), DL and ophthalmologists had comparable summary sensitivity [89.2% (82.2-93.6) - 93.6) versus 82.2% (71.5-89.5); - 89.5); P = 0.20] and specificity fi city [(93.2% (85.5-97.0) - 97.0) versus 89.6% (78.8-95.2); - 95.2); P = 0.45]. Interpretation DL models may have good diagnostic accuracy for IK and comparable performance to ophthalmologists. These fi ndings should be interpreted with caution due to the image-based analysis that did not account for potential correlation within individuals, relatively homogeneous population studies, lack of pre-specification fi cation of DL thresholds, and limited external validation. Future studies should improve their reporting, data diversity, external validation, transparency, and explainability to increase the reliability and generalisability of DL models for clinical deployment.
引用
收藏
页数:17
相关论文
共 77 条
  • [1] Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis
    Aggarwal, Ravi
    Sounderajah, Viknesh
    Martin, Guy
    Ting, Daniel S. W.
    Karthikesalingam, Alan
    King, Dominic
    Ashrafian, Hutan
    Darzi, Ara
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [2] Evaluating medical tests: introducing the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy
    Bossuyt, Patrick M.
    Deeks, Jonathan J.
    Leeflang, Mariska M.
    Takwoingi, Yemisi
    Flemyng, Ella
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2023, (07):
  • [3] The global incidence and diagnosis of fungal keratitis
    Brown, Lottie
    Leck, Astrid K.
    Gichangi, Michael
    Burton, Matthew J.
    Denning, David W.
    [J]. LANCET INFECTIOUS DISEASES, 2021, 21 (03) : E49 - E57
  • [4] Presumed Microbial Keratitis Cases Resulting in Evisceration and Enucleation in Sydney, Australia
    Cabrera-Aguas, Maria
    Khoo, Pauline
    Watson, Stephanie L.
    [J]. OCULAR IMMUNOLOGY AND INFLAMMATION, 2023, 31 (01) : 224 - 230
  • [5] EyeHealer: A large-scale anterior eye segment dataset with eye structure and lesion annotations
    Cai, Wenjia
    Xu, Jie
    Wang, Ke
    Liu, Xiaohong
    Xu, Wenqin
    Cai, Huimin
    Gao, Yuanxu
    Su, Yuandong
    Zhang, Meixia
    Zhu, Jie
    Zhang, Charlotte L.
    Zhang, Edward E.
    Wang, Fangfei
    Yin, Yun
    Lai, Iat Fan
    Wang, Guangyu
    Zhang, Kang
    Zheng, Yingfeng
    [J]. PRECISION CLINICAL MEDICINE, 2021, 4 (02) : 85 - 92
  • [6] In Vivo Confocal Microscopy Cellular Features of Host and Organism in Bacterial, Fungal, and Acanthamoeba Keratitis
    Chidambaram, Jaya D.
    Prajna, Namperumalsamy V.
    Palepu, Srikanthi
    Lanjewar, Shruti
    Shah, Manisha
    Elakkiya, Shanmugam
    Macleod, David
    Lalitha, Prajna
    Burton, Matthew J.
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2018, 190 : 24 - 33
  • [7] Prospective Study of the Diagnostic Accuracy of the In Vivo Laser Scanning Confocal Microscope for Severe Microbial Keratitis
    Chidambaram, Jaya D.
    Prajna, Namperumalsamy V.
    Larke, Natasha L.
    Palepu, Srikanthi
    Lanjewar, Shruti
    Shah, Manisha
    Elakkiya, Shanmugam
    Lalitha, Prajna
    Carnt, Nicole
    Vesaluoma, Minna H.
    Mason, Melanie
    Hau, Scott
    Burton, Matthew J.
    [J]. OPHTHALMOLOGY, 2016, 123 (11) : 2285 - 2293
  • [8] Collier SA, 2014, MMWR-MORBID MORTAL W, V63, P1027
  • [9] The Clinical Differentiation of Bacterial and Fungal Keratitis: A Photographic Survey
    Dalmon, Cyril
    Porco, Travis C.
    Lietman, Thomas M.
    Prajna, N. Venkatesh
    Prajna, Lalitha
    Das, Mano Ranjan
    Kumar, J. Arun
    Mascarenhas, Jeena
    Margolis, Todd P.
    Whitcher, John P.
    Jeng, Bennie H.
    Keenan, Jeremy D.
    Chan, Matilda F.
    McLeod, Stephen D.
    Acharya, Nisha R.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (04) : 1787 - 1791
  • [10] Clinically applicable deep learning for diagnosis and referral in retinal disease
    De Fauw, Jeffrey
    Ledsam, Joseph R.
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Tomasev, Nenad
    Blackwell, Sam
    Askham, Harry
    Glorot, Xavier
    O'Donoghue, Brendan
    Visentin, Daniel
    van den Driessche, George
    Lakshminarayanan, Balaji
    Meyer, Clemens
    Mackinder, Faith
    Bouton, Simon
    Ayoub, Kareem
    Chopra, Reena
    King, Dominic
    Karthikesalingam, Alan
    Hughes, Cian O.
    Raine, Rosalind
    Hughes, Julian
    Sim, Dawn A.
    Egan, Catherine
    Tufail, Adnan
    Montgomery, Hugh
    Hassabis, Demis
    Rees, Geraint
    Back, Trevor
    Khaw, Peng T.
    Suleyman, Mustafa
    Cornebise, Julien
    Keane, Pearse A.
    Ronneberger, Olaf
    [J]. NATURE MEDICINE, 2018, 24 (09) : 1342 - +