Heavy-light mesons from a flavour-dependent interaction

被引:0
作者
Gao, Fei [1 ]
Miramontes, Angel S. [2 ,3 ,4 ]
Papavassiliou, Joannis [2 ,3 ,4 ,6 ]
Pawlowski, Jan M. [5 ,6 ]
机构
[1] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[2] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain
[3] Univ Valencia, IFIC, E-46100 Valencia, Spain
[4] CSIC, E-46100 Valencia, Spain
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[6] GSI Darmstadt, ExtreMe Matter Inst EMMI, Planckstr 1, D-64291 Darmstadt, Germany
基金
美国国家科学基金会;
关键词
DYSON-SCHWINGER EQUATIONS; CHIRAL-SYMMETRY BREAKING; RAINBOW-LADDER; BOUND-STATES; GLUON; QCD; RENORMALIZATION; IDENTITIES; BEHAVIOR; THEOREM;
D O I
10.1016/j.physletb.2025.139384
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a new framework for the physics of heavy-light mesons, whose key element is the effective incorporation of flavour-dependent contributions into the corresponding bound-state and quark gap equations. These terms originate from the fully-dressed quark-gluon vertices appearing in the kernels of these equations, and provide a natural distinction between "light" and "heavy" quarks. In this approach, only the classical form factor of the quark-gluon vertex is retained, and is evaluated in the so-called "symmetric" configuration. The standard Slavnov-Taylor identity links this form factor to the quark wave-function, allowing for the continuous transition from light to heavy quarks through the mere variation of the current quark mass in the gap equation. The method is used to compute the masses and decay constants of specific pseudoscalars and vector heavy-light systems, showing good overall agreement with both experimental data and lattice simulations.
引用
收藏
页数:8
相关论文
共 120 条
[1]  
Ivanov M.A., Kalinovsky Y.L., Roberts C.D., Phys. Rev. D, 60, (1999)
[2]  
Bhagwat M.S., Krassnigg A., Maris P., Roberts C.D., Eur. Phys. J. A, 31, pp. 630-637, (2007)
[3]  
Gomez-Rocha M., Hilger T., Krassnigg A., Phys. Rev. D, 92, 5, (2015)
[4]  
Fischer C.S., Kubrak S., Williams R., Eur. Phys. J. A, 51, (2015)
[5]  
Chen M., Chang L., Chin. Phys. C, 43, 11, (2019)
[6]  
Qin P., Qin S.-X., Liu Y.-X., Phys. Rev. D, 101, 11, (2020)
[7]  
Hilger T., Popovici C., Gomez-Rocha M., Krassnigg A., Phys. Rev. D, 91, 3, (2015)
[8]  
Nguyen T., Souchlas N.A., Tandy P.C., AIP Conf. Proc., 1116, 1, pp. 327-333, (2009)
[9]  
Souchlas N., Phys. Rev. D, 81, (2010)
[10]  
Binosi D., Chang L., Ding M., Gao F., Papavassiliou J., Roberts C.D., Phys. Lett. B, 790, pp. 257-262, (2019)