A method for constrained energy-maximising control of heaving wave-energy converters via a nonlinear frequency response

被引:1
作者
Guiver, Chris [1 ]
机构
[1] Edinburgh Napier Univ, Sch Comp Engn & Built Environm, Edinburgh, Midlothian, Scotland
来源
2024 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS, CCTA 2024 | 2024年
关键词
Frequency domain; Nonlinear control; Wave-energy conversion; TO-STATE STABILITY; SYSTEMS;
D O I
10.1109/CCTA60707.2024.10666584
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A theoretical grounding is presented for justifying how frequency domain methods may be applied in the determination of constrained extracted-energy maximising controls in wave-energy conversion applications subject to nonlinear models. A computational method is subsequently outlined. The theory applies to forced Lur'e systems, an important class of nonlinear control systems, including nonlinear models of simple heaving point-absorber wave-energy converters, and which facilitates a well-defined and tractable frequency response for such systems.
引用
收藏
页码:590 / 597
页数:8
相关论文
共 46 条
  • [11] Desoer C. A., 1975, Feedback Systems: Input-Output Properties
  • [12] A review of wave energy converter technology
    Drew, B.
    Plummer, A. R.
    Sahinkaya, M. N.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2009, 223 (A8) : 887 - 902
  • [13] Nonlinear Energy-Maximizing Optimal Control of Wave Energy Systems: A Moment-Based Approach
    Faedo, Nicolas
    Scarciotti, Giordano
    Astolfi, Alessandro
    Ringwood, John V.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (06) : 2533 - 2547
  • [14] Faedo N, 2017, IFAC J SYST CONTROL, V1, P37, DOI 10.1016/j.ifacsc.2017.07.001
  • [15] Falnes J., 2002, Ocean waves and oscillating systems: linear interactions including wave-energy extraction
  • [16] Fusco F, 2014, IEEE INTL CONF CONTR, P292, DOI 10.1109/CCA.2014.6981361
  • [17] Incremental input-to-state stability for Lur'e systems and asymptotic behaviour in the presence of Stepanov almost periodic forcing
    Gilmore, Max E.
    Guiver, Chris
    Logemann, Hartmut
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 300 : 692 - 733
  • [18] Stability and convergence properties of forced infinite-dimensional discrete-time Lur'e systems
    Gilmore, Max E.
    Guiver, Chris
    Logemann, Hartmut
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (12) : 3026 - 3049
  • [19] NONLINEAR CIRCUIT ANALYSIS USING THE METHOD OF HARMONIC-BALANCE - A REVIEW OF THE ART .1. INTRODUCTORY CONCEPTS
    GILMORE, RJ
    STEER, MB
    [J]. INTERNATIONAL JOURNAL OF MICROWAVE AND MILLIMETER-WAVE COMPUTER-AIDED ENGINEERING, 1991, 1 (01): : 22 - 37
  • [20] Transfer functions of infinite-dimensional systems: positive realness and stabilization
    Guiver, C.
    Logemann, H.
    Opmeer, M. R.
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2017, 29 (04)