Physics Informed Neural Networks and Gaussian Processes-Hamiltonian Monte Carlo to Solve Ordinary Differential Equations

被引:0
作者
Chachalo, Roberth [1 ]
Astudillo, Jaime [1 ]
Infante, Saba [1 ]
Pineda, Israel [2 ]
机构
[1] Univ Yachay Tech, Urcuqui, Ecuador
[2] Univ San Francisco Quito, Quito, Ecuador
来源
INFORMATION AND COMMUNICATION TECHNOLOGIES, TICEC 2024 | 2025年 / 2273卷
关键词
Physics-Informed Neural Networks; Gaussian Processes; Halmitonian Monte Carlo; Ordinary Differential Equations; Bayesian Inference; Uncertainty Quantification;
D O I
10.1007/978-3-031-75431-9_17
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Non-linear systems of differential equations are vital in fields like biology, finance, ecology, and engineering for modeling dynamic systems. This paper explores two advanced function approximation techniques Physics Informed Neural Networks (PINNs) and Gaussian Processes (GPs) combined with Hamiltonian Monte Carlo (HMC) for solving Ordinary Differential Equations (ODEs) that represent complex physical phenomena. The proposed approach integrates PINNs and GP-HMC, demonstrated through two synthetic models (Lotka Volterra and Fitzhugh Nagumo) and a real dataset (COVID-19 SIR model). The results show that the methodology effectively estimates parameters with low Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). For example, in the Lotka-Volterra model, GP-HMC achieved an RMSE of 0.044 and MAE of 0.041 for one state variable, while PINNs yielded an RMSE of 0.106 and MAE of 0.081. These results highlight the robustness of the methodology in accurately reconstructing system states across varying levels of variability.
引用
收藏
页码:253 / 268
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 2023, Adv. Comput. Math., V49, P2
[2]  
Baty H., 2023, arXiv, P1
[3]  
Baty H, 2024, Arxiv, DOI arXiv:2403.00599
[4]  
Baty H, 2023, Arxiv, DOI arXiv:2304.08289
[5]   Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function [J].
Benson, Alan P. ;
Stevenson-Cocks, Harley J. ;
Whittaker, Dominic G. ;
White, Ed ;
Colman, Michael A. .
METHODS, 2021, 185 :60-81
[6]  
Betancourt M, 2018, Arxiv, DOI [arXiv:1701.02434, 10.48550/arXiv.1701.02434]
[7]  
Carnazza F, 2024, Arxiv, DOI arXiv:2402.03913
[8]   Estimation of Ordinary Differential Equations Solutions with Gaussian Processes and Polynomial Chaos Expansion [J].
Cedeno, Naomi ;
Infante, Saba .
INFORMATION AND COMMUNICATION TECHNOLOGIES (TICEC 2021), 2021, 1456 :3-17
[9]  
Christopher W., 2006, Gaussian Processes for Machine Learning, V2
[10]   Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What's Next [J].
Cuomo, Salvatore ;
Di Cola, Vincenzo Schiano ;
Giampaolo, Fabio ;
Rozza, Gianluigi ;
Raissi, Maziar ;
Piccialli, Francesco .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)