Structure-preserving parametric finite element methods for simulating axisymmetric solid-state dewetting problems with anisotropic surface energies

被引:0
作者
Li, Meng [1 ]
Zhou, Chunjie [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state dewetting; Anisotropy; Parametric finite element method; Axisymmetry; Energy stability; Volume conservation; GEOMETRIC EVOLUTION-EQUATIONS; SHARP-INTERFACE MODEL; CAPILLARY INSTABILITIES; NUMERICAL APPROXIMATION; THIN-FILMS; DIFFUSION; GROWTH;
D O I
10.1016/j.jcp.2025.113944
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Solid-state dewetting (SSD), a widespread phenomenon in solid-solid-vapor system, could be used to describe the accumulation of solid thin films on the substrate. In this work, we consider the sharp-interface model for axisymmetric SSD with anisotropic surface energy. By introducing two types of surface energy matrices from the anisotropy functions, we aim to design two structure- preserving algorithms for the axisymmetric SSD. The newly designed schemes are applicable to a broader range of anisotropy functions, and we can theoretically prove their volume conservation and energy stability. In addition, based on a novel weak formulation for the axisymmetric SSD, we further build another two numerical schemes that have good mesh properties. Finally, numerous numerical tests are reported to showcase the accuracy and efficiency of the numerical methods.
引用
收藏
页数:20
相关论文
共 57 条
  • [1] Anisotropic hole growth during solid-state dewetting of single-crystal Au-Fe thin films
    Amram, D.
    Klinger, L.
    Rabkin, E.
    [J]. ACTA MATERIALIA, 2012, 60 (6-7) : 3047 - 3056
  • [2] Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look
    Armelao, Lidia
    Barreca, Davide
    Bottaro, Gregorio
    Gasparotto, Alberto
    Gross, Silvia
    Maragno, Cinzia
    Tondello, Eugenio
    [J]. COORDINATION CHEMISTRY REVIEWS, 2006, 250 (11-12) : 1294 - 1314
  • [3] A finite element method for surface diffusion:: the parametric case
    Bänsch, E
    Morin, P
    Nochetto, RH
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) : 321 - 343
  • [4] A structure-preserving parametric finite element method for geometric flows with anisotropic surface energy
    Bao, Weizhu
    Li, Yifei
    [J]. NUMERISCHE MATHEMATIK, 2024, 156 (02) : 609 - 639
  • [5] Bao WZ, 2024, Arxiv, DOI arXiv:2401.00207
  • [6] A SYMMETRIZED PARAMETRIC FINITE ELEMENT METHOD FOR ANISOTROPIC SURFACE DIFFUSION IN THREE DIMENSIONS
    Bao, Weizhu
    LI, Yifei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04) : A1438 - A1461
  • [7] AN ENERGY-STABLE PARAMETRIC FINITE ELEMENT METHOD FOR SIMULATING SOLID-STATE DEWETTING PROBLEMS IN THREE DIMENSIONS
    Bao, Weizhu
    Zhao, Quan
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (04): : 771 - 796
  • [8] A SYMMETRIZED PARAMETRIC FINITE ELEMENT METHOD FOR ANISOTROPIC SURFACE DIFFUSION OF CLOSED CURVES
    Bao, Weizhu
    Jiang, Wei
    LI, Yifei
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 617 - 641
  • [9] Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations
    Bao, Weizhu
    Garcke, Harald
    Nurnberg, Robert
    Zhao, Quan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 460
  • [10] A STRUCTURE-PRESERVING PARAMETRIC FINITE ELEMENT METHOD FOR SURFACE DIFFUSION
    Bao, Weizhu
    Zhao, Quan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (05) : 2775 - 2799