FF-LOGO: Cross-Modality Point Cloud Registration with Feature Filtering and Local to Global Optimization

被引:1
|
作者
Ma, Nan [1 ]
Wang, Mohan [1 ]
Han, Yiheng [1 ]
Liu, Yong-Jin [2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, MOE Key Lab Pervas Comp, BNRist, Beijing, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024 | 2024年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
D O I
10.1109/ICRA57147.2024.10610549
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-modality point cloud registration is confronted with significant challenges due to inherent differences in modalities between sensors. To deal with this problem, we propose FF-LOGO: a cross-modality point cloud registration framework with Feature Filtering and LOcal-Global Optimization. The cross-modality feature correlation filtering module extracts geometric transformation-invariant features from cross-modality point clouds and achieves point selection by feature matching. We also introduce a cross-modality optimization process, including a local adaptive key region aggregation module and a global modality consistency fusion optimization module. Experimental results demonstrate that our two-stage optimization significantly improves the registration accuracy of the feature association and selection module. Our method achieves a substantial increase in recall rate compared to the current state-of-the-art methods on the 3DCSR dataset, improving from 40.59% to 75.74%. Our code will be available at https://github.com/wangmohan17/FFLOGO.
引用
收藏
页码:744 / 750
页数:7
相关论文
共 50 条
  • [1] An Adaptive Point Cloud Registration Algorithm Based on Cross Optimization of Local Feature Point Normal and Global Surface
    Li, Lei
    Mei, Shuang
    Ma, Weijie
    Liu, Xingyue
    Li, Jichun
    Wen, Guojun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (04) : 6434 - 6447
  • [2] PTRNet: Global Feature and Local Feature Encoding for Point Cloud Registration
    Li, Cuixia
    Yang, Shanshan
    Shi, Li
    Liu, Yue
    Li, Yinghao
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [3] Discriminative optimization algorithm with global-local feature for LIDAR point cloud registration
    Wang, Jia
    Wang, Ping
    Li, Biao
    Fu, Ruigang
    Zhao, Siyi
    Zhang, Hong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (23) : 8994 - 9014
  • [4] Feature Description with Feature Point Registration Error Using Local and Global Point Cloud Encoders
    Tamata, Kenshiro
    Mashita, Tomohiro
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (01) : 134 - 140
  • [5] A Robust Multi-Local to Global with Outlier Filtering for Point Cloud Registration
    Chen, Yilin
    Mei, Yang
    Yu, Baocheng
    Xu, Wenxia
    Wu, Yiqi
    Zhang, Dejun
    Yan, Xiaohu
    REMOTE SENSING, 2023, 15 (24)
  • [6] Image-to-Point Registration via Cross-Modality Correspondence Retrieval
    Bie, Lin
    Li, Siqi
    Cheng, Kai
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 266 - 274
  • [7] GLSFF: Global-local specific feature fusion for cross-modality pedestrian re-identification
    Xue, Chen
    Deng, Zhongliang
    Wang, Shuo
    Hu, Enwen
    Zhang, Yao
    Yang, Wangwang
    Wang, Yiming
    COMPUTER COMMUNICATIONS, 2024, 215 : 157 - 168
  • [8] Cross-Modality Feature Fusion Network for Few-Shot 3D Point Cloud Classification
    Yang, Minmin
    Chen, Jiajing
    Velipasalar, Senem
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 653 - 662
  • [9] Partial Point Cloud Registration With Deep Local Feature
    Zhang Y.-X.
    Sun Z.-L.
    Zeng Z.
    Lam K.-M.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (05): : 1317 - 1327
  • [10] A Hybrid Approach for Cross-Modality Pose Estimation Between Image and Point Cloud
    Huang, Ze
    Sun, Li
    He, Qibin
    Xiao, Zhongyang
    Bai, Xinhui
    Yuan, Hongyuan
    Su, Songzhi
    Zhang, Li
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4583 - 4590