EXISTENCE AND ASYMPTOTIC BEHAVIOR OF NORMALIZED GROUND STATES FOR CRITICAL COUPLED CHOQUARD SYSTEMS

被引:0
作者
Yu, Yan [1 ]
Sang, Yanbin [1 ]
机构
[1] North Univ China, Sch Math, Taiyuan 030051, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2025年 / 9卷 / 02期
关键词
Choquard system; Normalized solutions; Upper critical exponent; Variational methods; STANDING WAVES; SCHRODINGER-EQUATIONS;
D O I
10.23952/jnva.9.2025.2.03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of normalized solutions to a Choquard system with upper critical exponents. First, we prove the existence of normalized ground states for the coupling constant beta > 0. Furthermore, the nonexistence result of normalized solutions is investigated when beta < 0. Finally, the asymptotic properties of the solutions are obtained as beta -> 0(+) or beta -> + infinity.
引用
收藏
页码:197 / 228
页数:32
相关论文
共 32 条
[1]  
Abdellaoui B, 2009, CALC VAR PARTIAL DIF, V34, P97, DOI 10.1007/s00526-008-0177-2
[2]   Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrodinger systems [J].
Bartsch, Thomas ;
Li, Houwang ;
Zou, Wenming .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (01)
[3]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[4]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[5]   Standing waves with prescribed mass for the Schrodinger equations with van der Waals type potentials [J].
Cao, Daomin ;
Jia, Huifang ;
Luo, Xiao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 276 :228-263
[6]   The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J].
Gao, Fashun ;
Yang, Minbo .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) :1219-1242
[7]   On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents [J].
Gao, Fashun ;
Yang, Minbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1006-1041
[8]   Existence and multiplicity of the positive normalized solutions to the coupled Hartree-Fock type nonlocal elliptic system [J].
Geng, Qiuping ;
Tu, Yuanyuan ;
Wang, Jun .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (04)
[9]   Existence and multiplicity of nontrivial solutions of weakly coupled nonlinear Hartree type elliptic system [J].
Geng, Qiuping ;
Dong, Yangyang ;
Wang, Jun .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02)
[10]   Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential [J].
Georgiev, Vladimir ;
Venkov, George .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (02) :420-438