Enhancing the accuracy and effectiveness of diagnosis of spontaneous bacterial peritonitis in cirrhotic patients: A machine learning approach utilizing clinical and laboratory data

被引:2
作者
Khorsand, Babak [1 ]
Rajabnia, Mohsen [2 ]
Jahanian, Ali [3 ]
Fathy, Mobin [3 ]
Taghvaei, Somayye [4 ]
Houri, Hamidreza [5 ]
机构
[1] Univ Calif Irvine, Dept Neurol, Irvine, CA USA
[2] Alborz Univ Med Sci, Noncommunicable Dis Res Ctr, Taleghani Blvd, Karaj R2V4 2VX, Iran
[3] Shahid Beheshti Univ Med Sci, Res Inst Gastroenterol & Liver Dis, Gastroenterol & Liver Dis Res Ctr, Tehran, Iran
[4] Natl Inst Genet Engn & Biotechnol, Dept Med Biotechnol, Tehran, Iran
[5] Shahid Beheshti Univ Med Sci, Res Inst Gastroenterol & Liver Dis, Foodborne & Waterborne Dis Res Ctr, Shahid Arabi Ave,Yemen St, Tehran, Iran
来源
ADVANCES IN MEDICAL SCIENCES | 2025年 / 70卷 / 01期
关键词
Peritonitis; Diagnosis; Liver cirrhosis; Machine learning; DEHYDROGENASE; PROPHYLAXIS; MORTALITY;
D O I
10.1016/j.advms.2024.10.001
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Purpose: Spontaneous bacterial peritonitis (SBP) is a bacterial infection of ascitic fluid that develops naturally, without being triggered by any surgical conditions or procedures, and is a common complication of cirrhosis. With a potential mortality rate of 40 %, accurate diagnosis and prompt initiation of appropriate antibiotic therapy are crucial for optimizing patient outcomes and preventing life-threatening complications. This study aimed to expand the use of computational models to improve the diagnostic accuracy of SBP in cirrhotic patients by incorporating a broader range of data, including clinical variables and laboratory values. Patients and methods: We employed 5 machine learning classification methods - Decision Tree, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Random Forest, utilizing a variety of demographic, clinical, and laboratory features and biomarkers. Results: Ascitic fluid markers, including white blood cell (WBC) count, lactate dehydrogenase (LDH), total protein, and polymorphonuclear cells (PMN), significantly differentiated between SBP and non-SBP patients. The Random Forest model demonstrated the highest overall accuracy at 86 %, while the Naive Bayes model achieved the highest sensitivity at 72 %. Utilizing 10 key features instead of the full feature set improved model performance, notably enhancing specificity and accuracy. Conclusion: Our analysis highlights the potential of machine learning to enhance the accuracy of SBP diagnosis in cirrhotic patients. Integrating these models into clinical workflows could substantially improve patient outcomes. To achieve this, ongoing multidisciplinary research is crucial. Ensuring model interpretability, continuous monitoring, and rigorous validation will be essential for the successful implementation of real-time clinical decision support systems.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 31 条
  • [1] Machine learning in clinical decision making
    Adlung, Lorenz
    Cohen, Yotam
    Mor, Uria
    Elinav, Eran
    [J]. MED, 2021, 2 (06): : 642 - 665
  • [2] DIAGNOSTIC VALUE OF ASCITIC FLUID LACTIC-DEHYDROGENASE, PROTEIN, AND WBC LEVELS
    BOYER, TD
    KAHN, AM
    REYNOLDS, TB
    [J]. ARCHIVES OF INTERNAL MEDICINE, 1978, 138 (07) : 1103 - 1105
  • [3] Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers
    Calderaro, Julien
    Kather, Jakob Nikolas
    [J]. GUT, 2021, 70 (06) : 1183 - 1193
  • [4] Diagnosis of Spontaneous Bacterial Peritonitis and an In Situ Hybridization Approach to Detect an "Unidentified'' Pathogen
    Enomoto, Hirayuki
    Inoue, Shin-ichi
    Matsuhisa, Akio
    Nishiguchi, Shuhei
    [J]. INTERNATIONAL JOURNAL OF HEPATOLOGY, 2014, 2014
  • [5] Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis
    Fernandez, Javier
    Navasa, Miquel
    Planas, Ramon
    Montoliu, Silvia
    Monfort, David
    Soriano, German
    Vila, Carmen
    Pardo, Alberto
    Quintero, Enrique
    Vargas, Victor
    Such, Jose
    Gines, Pere
    Arroyo, Vicente
    [J]. GASTROENTEROLOGY, 2007, 133 (03) : 818 - 824
  • [6] Antibiotic Prophylaxis in Cirrhosis: Good and Bad
    Fernandez, Javier
    Tandon, Puneeta
    Mensa, Jose
    Garcia-Tsao, Guadalupe
    [J]. HEPATOLOGY, 2016, 63 (06) : 2019 - 2031
  • [7] Spontaneous bacterial peritonitis: a historical perspective
    Garcia-Tsao, G
    [J]. JOURNAL OF HEPATOLOGY, 2004, 41 (04) : 522 - 527
  • [8] Spontaneous bacterial peritonitis
    Donald J. Hillebrand
    [J]. Current Treatment Options in Gastroenterology, 2002, 5 (6) : 479 - 489
  • [9] Endoscopic Diagnostic Support System for cT1b Colorectal Cancer Using Deep Learning
    Ito, Nao
    Kawahira, Hiroshi
    Nakashima, Hirotaka
    Uesato, Masaya
    Miyauchi, Hideaki
    Matsubara, Hisahiro
    [J]. ONCOLOGY, 2019, 96 (01) : 44 - 50
  • [10] Artificial Intelligence in Cardiology
    Johnson, Kipp W.
    Soto, Jessica Torres
    Glicksberg, Benjamin S.
    Shameer, Khader
    Miotto, Riccardo
    Ali, Mohsin
    Ashley, Euan
    Dudley, Joel T.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (23) : 2668 - 2679