Nonlocal correlation dynamics of two qubits interacting with a cavity coherent field: time-dependent atomic location effects

被引:0
作者
Hashem, Mostafa [1 ,3 ]
Aljuaydi, Fahad [2 ]
Rahman, A. [4 ]
Mohamed, A-b a [2 ,3 ]
机构
[1] Sohar Univ, Fac Educ & Arts, Math Educ Program, Sohar 311, Oman
[2] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities, Dept Math, Al Kharj 11942, Saudi Arabia
[3] Assiut Univ, Fac Sci, Dept Math, Assiut, Egypt
[4] Univ Chinese Acad Sci, Sch Phys, Yuquan Rd 19A, Beijing 100049, Peoples R China
关键词
atomic nonlocality; Schr & ouml; dinger equation; atomic motion; entanglement; QUANTUM CORRELATIONS; ENTANGLEMENT; PHYSICS; STATE; MODEL;
D O I
10.1088/1612-202X/adbd1d
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This work delves into the nonlocal correlation dynamics of the maximum-Bell nonlocality (MBN), uncertainty-induced nonlocality (UIN), and concurrence of two two-level atoms having time-dependent atomic locations within Tavis-Cummings model. By considering a scenario where the pure two qubits resonantly interact with an even coherent cavity field through a two-photon transition, we explore the nonlocal correlation dynamics of both moving and stationary two-atom configurations under varying conditions and coupling parameters. Our findings reveal that the coherent cavity induces the successful generation of nonlocal correlations between atoms in both modes, with moving atoms exhibiting higher and symmetrical nonlocal correlations. Interestingly, dynamical maps showcase distinct behaviors for atoms at rest, exhibiting precocity at higher atom-cavity strengths. Moreover, equal coupling strength results in lower quantum correlations. The UIN measure emerges as the most robust quantum function, showing enhancements with sustained unequal coupling strengths, contrasting with the MBN and concurrence. These insights offer a nuanced understanding of nonlocal correlations in the Tavis-Cummings model, essential for advancing quantum information science and technology.
引用
收藏
页数:9
相关论文
共 68 条
[1]   Probing teleported quantum correlations in a two-qubit system inside a coherent field [J].
Abd-Rabbou M.Y. ;
Khalil E.M. ;
Al-Awfi S. .
Optik, 2024, 296
[2]   Coherent dynamics, chaos and entanglement of atoms in cavity [J].
Agapov, Sergey N. ;
Gorokhov, Alexander V. .
SARATOV FALL MEETING 2014: OPTICAL TECHNOLOGIES IN BIOPHYSICS AND MEDICINE XVI; LASER PHYSICS AND PHOTONICS XVI; AND COMPUTATIONAL BIOPHYSICS, 2015, 9448
[3]   Nonlocal correlations and entanglement in two coupled double quantum dots under external magnetic field [J].
Ait Mansour, H. ;
Chouiba, A. ;
Mansour, M. ;
El Baz, M. .
LASER PHYSICS LETTERS, 2024, 21 (12)
[4]   Quantum correlations beyond entanglement between two moving atoms interacting with a coherent cavity [J].
Aldosari, F. M. ;
Almutlg, Ahmad ;
Mohamed, A. -B. A. .
ALEXANDRIA ENGINEERING JOURNAL, 2023, 74 :509-515
[5]   Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties [J].
Algarni, Mariam ;
Berrada, Kamal ;
Abdel-Khalek, Sayed ;
Eleuch, Hichem .
MATHEMATICS, 2022, 10 (17)
[6]   Using quantum key distribution for cryptographic purposes: A survey [J].
Alleaume, R. ;
Branciard, C. ;
Bouda, J. ;
Debuisschert, T. ;
Dianati, M. ;
Gisin, N. ;
Godfrey, M. ;
Grangier, P. ;
Laenger, T. ;
Luetkenhaus, N. ;
Monyk, C. ;
Painchault, P. ;
Peev, M. ;
Poppe, A. ;
Pornin, T. ;
Rarity, J. ;
Renner, R. ;
Ribordy, G. ;
Riguidel, M. ;
Salvail, L. ;
Shields, A. ;
Weinfurter, H. ;
Zeilinger, A. .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :62-81
[7]   Creation of quantum correlations between two atoms in a dissipative environment from an initial vacuum state [J].
Altintas, Ferdi ;
Eryigit, Resul .
PHYSICS LETTERS A, 2012, 376 (22) :1791-1796
[8]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[9]   Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies [J].
Awschalom, David ;
Berggren, Karl K. ;
Bernien, Hannes ;
Bhave, Sunil ;
Carr, Lincoln D. ;
Davids, Paul ;
Economou, Sophia E. ;
Englund, Dirk ;
Faraon, Andrei ;
Fejer, Martin ;
Guha, Saikat ;
Gustafsson, Martin, V ;
Hu, Evelyn ;
Jiang, Liang ;
Kim, Jungsang ;
Korzh, Boris ;
Kumar, Prem ;
Kwiat, Paul G. ;
Loncar, Marko ;
Lukin, Mikhail D. ;
Miller, David A. B. ;
Monroe, Christopher ;
Nam, Sae Woo ;
Narang, Prineha ;
Orcutt, Jason S. ;
Raymer, Michael G. ;
Safavi-Naeini, Amir H. ;
Spiropulu, Maria ;
Srinivasan, Kartik ;
Sun, Shuo ;
Vuckovic, Jelena ;
Waks, Edo ;
Walsworth, Ronald ;
Weiner, Andrew M. ;
Zhang, Zheshen .
PRX QUANTUM, 2021, 2 (01)
[10]   Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation [J].
Banaszek, K ;
Wódkiewicz, K .
PHYSICAL REVIEW A, 1998, 58 (06) :4345-4347