A voice-based algorithm can predict type 2 diabetes status in USA adults: Findings from the Colive Voice study

被引:0
|
作者
Elbeji, Abir [1 ]
Pizzimenti, Megane [1 ]
Aguayo, Gloria [1 ]
Fischer, Aurelie [1 ]
Ayadi, Hanin [1 ]
Mauvais-Jarvis, Franck [2 ,3 ]
Riveline, Jean-Pierre [4 ,5 ,6 ]
Despotovic, Vladimir [7 ]
Fagherazzi, Guy [1 ]
机构
[1] Luxembourg Inst Hlth, Dept Precis Hlth, Deep Digital Phenotyping Res Unit, 1 A B Rue Thomas Edison, L-1445 Strassen, Luxembourg
[2] Tulane Univ, Sch Med, Deming Dept Med, Sect Endocrinol & Metab, New Orleans, LA USA
[3] VA Med Ctr, Southeast Louisiana, New Orleans, LA USA
[4] Inst Necker Enfants Malad, Inserm, Immediab Lab, CNRS,UMR 8253,U1151, Paris, France
[5] Lariboisiere Univ Hosp, Assistance Publ Hop Paris, Dept Diabetol Endocrinol & Nutr, Paris, France
[6] Univ Paris Cite, Inst Necker Enfants Malad, Immediab Lab, INSERM,UMR S1151,CNRS,UMR S8253, Paris, France
[7] Luxembourg Inst Hlth, Bioinformat Platform, 1 A B rue Thomas Edison, L-1445 Strassen, Luxembourg
来源
PLOS DIGITAL HEALTH | 2024年 / 3卷 / 12期
关键词
RISK-FACTORS; ASSOCIATION; DEPRESSION; MELLITUS; SCORE;
D O I
10.1371/journal.pdig.0000679
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The pressing need to reduce undiagnosed type 2 diabetes (T2D) globally calls for innovative screening approaches. This study investigates the potential of using a voice-based algorithm to predict T2D status in adults, as the first step towards developing a non-invasive and scalable screening method. We analyzed pre-specified text recordings from 607 US participants from the Colive Voice study registered on ClinicalTrials.gov (NCT04848623). Using hybrid BYOL-S/CvT embeddings, we constructed gender-specific algorithms to predict T2D status, evaluated through cross-validation based on accuracy, specificity, sensitivity, and Area Under the Curve (AUC). The best models were stratified by key factors such as age, BMI, and hypertension, and compared to the American Diabetes Association (ADA) score for T2D risk assessment using Bland-Altman analysis. The voice-based algorithms demonstrated good predictive capacity (AUC = 75% for males, 71% for females), correctly predicting 71% of male and 66% of female T2D cases. Performance improved in females aged 60 years or older (AUC = 74%) and individuals with hypertension (AUC = 75%), with an overall agreement above 93% with the ADA risk score. Our findings suggest that voice-based algorithms could serve as a more accessible, cost-effective, and noninvasive screening tool for T2D. While these results are promising, further validation is needed, particularly for early- stage T2D cases and more diverse populations.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Tenofovir Gel for Prevention of Herpes Simplex Virus Type 2 Acquisition: Findings From the VOICE Trial
    Marrazzo, Jeanne M.
    Rabe, Lorna
    Kelly, Cliff
    Richardson, Barbra
    Deal, Carolyn
    Schwartz, Jill L.
    Chirenje, Z. M.
    Piper, Jeanna
    Morrow, Rhoda Ashley
    Hendrix, Craig W.
    Marzinke, Mark A.
    Hillier, Sharon L.
    JOURNAL OF INFECTIOUS DISEASES, 2019, 219 (12): : 1940 - 1947
  • [12] An algorithm to predict risk of Type 2 diabetes in Turkish adults: Contribution of C-reactive protein
    Onat, A.
    Can, G.
    Yuksel, H.
    Ayhan, E.
    Dogan, Y.
    Hergenc, G.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2011, 34 (08) : 580 - 586
  • [13] An algorithm to predict risk of Type 2 diabetes in Turkish adults: Contribution of C-reactive protein
    A. Onat
    G. Can
    H. Yüksel
    E. Ayhan
    Y. Dogan
    G. Hergenç
    Journal of Endocrinological Investigation, 2011, 34 : 580 - 586
  • [14] Health-promoting behaviors among adults with type 2 diabetes: Findings from the Health and Retirement Study
    Nothwehr, F
    Stump, T
    PREVENTIVE MEDICINE, 2000, 30 (05) : 407 - 414
  • [15] Retinal venular tortuosity and fractal dimension predict incident retinopathy in adults with type 2 diabetes: the Edinburgh Type 2 Diabetes Study
    Forster, Rachel B.
    Garcia, Emmanuel Sandoval
    Sluiman, Anniek J.
    Grecian, Sheila M.
    McLachlan, Stela
    MacGillivray, Tom J.
    Strachan, Mark W. J.
    Price, Jackie F.
    DIABETOLOGIA, 2021, 64 (05) : 1103 - 1112
  • [16] Retinal venular tortuosity and fractal dimension predict incident retinopathy in adults with type 2 diabetes: the Edinburgh Type 2 Diabetes Study
    Rachel B. Forster
    Emmanuel Sandoval Garcia
    Anniek J. Sluiman
    Sheila M. Grecian
    Stela McLachlan
    Tom J. MacGillivray
    Mark W. J. Strachan
    Jackie F. Price
    Diabetologia, 2021, 64 : 1103 - 1112
  • [17] Experiences of adults with type 2 diabetes mellitus with low socioeconomic status: a qualitative study
    Cakmak, Vahide Semerci
    Sari, Ebru Sonmez
    Ozdemir, Serap Cetinkaya
    BMC PUBLIC HEALTH, 2025, 25 (01)
  • [18] Determining type 2 diabetes risk factors for the adults: A community based study from Turkey
    Cosansu, Gulhan
    Celik, Seyda
    Ozcan, Seyda
    Olgun, Nermin
    Yildirim, Nurdan
    Demir, Hulya Gulyuz
    PRIMARY CARE DIABETES, 2018, 12 (05) : 409 - 415
  • [19] Impact of the COVID-19 pandemic and lockdown restrictions on psychosocial and behavioural outcomes among Australian adults with type 2 diabetes: Findings from the PREDICT cohort study
    Sacre, Julian W.
    Holmes-Truscott, Elizabeth
    Salim, Agus
    Anstey, Kaarin J.
    Drummond, Grant R.
    Huxley, Rachel R.
    Magliano, Dianna J.
    van Wijngaarden, Peter
    Zimmet, Paul Z.
    Speight, Jane
    Shaw, Jonathan E.
    DIABETIC MEDICINE, 2021, 38 (09)
  • [20] Can fingernail quality predict bone damage in Type 2 diabetes mellitus? a pilot study
    Sihota, Praveer
    Pal, Rimesh
    Yadav, Ram Naresh
    Neradi, Deepak
    Karn, Shailesh
    Goni, Vijay G.
    Sharma, Siddhartha
    Mehandia, Vishwajeet
    Bhadada, Sanjay Kumar
    Kumar, Navin
    Rao, Sudhaker D.
    PLOS ONE, 2021, 16 (09):