Silver-Nanoparticles-Based Composites for Antimicrobial Applications: An Update

被引:1
作者
Manisekaran, Ravichandran [1 ]
Chettiar, Aruna-Devi Rasu [2 ]
Marasamy, Latha [2 ]
Ibarra, Veronica Campos [1 ]
Lopez-Ayuso, Christian Andrea [1 ]
Chavez-Granados, Patricia Alejandra [1 ]
Kandasamy, Ganeshlenin [3 ]
Acosta-Torres, Laura Susana [1 ]
Arthikala, Manoj-Kumar [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Escuela Nacl Estudios Super Unidad Leon, Interdisciplinary Res Lab LII, Nanostruct & Biomat Area,Predio El Saucillo & El P, Leon 37689, Mexico
[2] Univ Autonoma Queretaro, Fac Quim Mat Energia, Queretaro, Mexico
[3] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci &, Dept Aeronaut Engn, Chennai 600062, Tamil Nadu, India
[4] Univ Nacl Autonoma Mexico, Escuela Nacl Estudios Super ENES, Interdisciplinary Res Lab LII, Ciencias Agrogen,Unidad Leon, Leon 37689, Guanajuato, Mexico
关键词
Antimicrobial; Mechanism; Silver nanoparticles; Silver-based composites; ANTIVIRAL ACTIVITY; BIMETALLIC NANOPARTICLES; ANTIBACTERIAL ACTIVITY; ANTIFUNGAL ACTIVITY; ESCHERICHIA-COLI; CANDIDA-ALBICANS; EXTRACT; SURFACE; INHIBITION; BACTERIA;
D O I
10.1002/slct.202403772
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Antimicrobial resistance (AMR), which develops into superbugs, poses a significant challenge to global health leading to 4.95 million deaths in 2019, necessitating the exploration of alternative strategies. AMR is responsible for a significant economic cost estimated by the World Bank, where AMR could result in additional healthcare costs of US$ 1 trillion by 2050. Thus, overcoming these drawbacks is of great importance. Fortunately, the advent of 21st century nanotechnology provides an ample opportunity to develop diverse nanomaterials along with specific functionalization to treat bacteria, fungi, or viruses more effectively with the combination of innovative technologies. Among these, silver nanoparticles (AgNPs) are considered a great boon in the area of AMR, which has a long history of practice. However, in recent years, Ag-based composites have been designed by scientists to enhance their antimicrobial effects at minimal concentrations, thereby depending on synergism. Thus, in this review, we provide an update on the recent advances in Ag-based composites with metals, polymers, and carbon for various antimicrobial applications. In addition, we focused on the mechanisms that assist in tackling microbes and the toxicity of AgNPs. Thus, in this review, we highlight the synergistic effects of AgNP-based composites in combating several microorganisms.
引用
收藏
页数:24
相关论文
共 220 条
[1]   Structural, morphological features, and antibacterial behavior of PVA/PVP polymeric blends doped with silver nanoparticles via pulsed laser ablation [J].
Abd El-Kader, M. F. H. ;
Elabbasy, M. T. ;
Ahmed, M. K. ;
Menazea, A. A. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 13 :291-300
[2]   Design and optimization of PEGylated silver nanoparticles for efficient delivery of doxorubicin to cancer cells [J].
Abdelfattah, Ahmed ;
Aboutaleb, Ahmed E. ;
Abdel-Aal, Abu-Baker M. ;
Abdellatif, Ahmed A. H. ;
Tawfeek, Hesham M. ;
Abdel-Rahman, Sayed, I .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 71
[3]   Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities [J].
Abdellatif, Ahmed A. H. ;
Alturki, Hamad N. H. ;
Tawfeek, Hesham M. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[4]   Enhanced antibacterial performance of ultrathin silver/platinum nanopatches by a sacrificial anode mechanism [J].
Abuayyash, Adham ;
Ziegler, Nadine ;
Meyer, Hajo ;
Meischein, Michael ;
Sengstock, Christina ;
Moellenhoff, Julian ;
Rurainsky, Christian ;
Heggen, Marc ;
Garzon-Manjon, Alba ;
Scheu, Christina ;
Tschulik, Kristina ;
Ludwig, Alfred ;
Koeller, Manfred .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2020, 24
[5]  
Acosta-Torres LS, 2021, GAC MED MEX, V157, P437, DOI [10.24875/GMM.20000915, 10.24875/GMM.M21000585, 10.24875/gmm.20000915]
[6]   Efficient green silver nanoparticles-antibiotic combinations against antibiotic-resistant bacteria [J].
Adil, Muhammad ;
Alam, Siyab ;
Amin, Urooj ;
Ullah, Irfan ;
Muhammad, Mian ;
Ullah, Muti ;
Rehman, Asma ;
Khan, Tariq .
AMB EXPRESS, 2023, 13 (01)
[7]   Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides [J].
Aguilar-Mendez, Miguel A. ;
San Martin-Martinez, Eduardo ;
Ortega-Arroyo, Lesli ;
Cobian-Portillo, Georgina ;
Sanchez-Espindola, Esther .
JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (06) :2525-2532
[8]   Retardation of Bacterial Biofilm Formation by Coating Urinary Catheters with Metal Nanoparticle-Stabilized Polymers [J].
Al Rugaie, Osamah ;
Abdellatif, Ahmed A. H. ;
El-Mokhtar, Mohamed A. ;
Sabet, Marwa A. ;
Abdelfattah, Ahmed ;
Alsharidah, Mansour ;
Aldubaib, Musaed ;
Barakat, Hassan ;
Abudoleh, Suha Mujahed ;
Al-Regaiey, Khalid A. ;
Tawfeek, Hesham M. .
MICROORGANISMS, 2022, 10 (07)
[9]   Review on the Antimicrobial Properties of Carbon Nanostructures [J].
Al-Jumaili, Ahmed ;
Alancherry, Surjith ;
Bazaka, Kateryna ;
Jacob, Mohan V. .
MATERIALS, 2017, 10 (09)
[10]   Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities [J].
Al-Shmgani, Hanady S. A. ;
Mohammed, Wasnaa H. ;
Sulaiman, Ghassan M. ;
Saadoon, Ali H. .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2017, 45 (06) :1234-1240