Colloidal homogenization for the hydrodynamics of nematic liquid crystals

被引:0
作者
De Anna, Francesco [1 ]
Schloemerkemper, Anja [1 ]
Zarnescu, Arghir Dani [2 ,3 ,4 ]
机构
[1] Univ Wurzburg, Inst Math, Wurzburg, Germany
[2] Basque Ctr Appl Math, BCAM, Bilbao, Bizkaia, Spain
[3] IKERBASQUE, Basque Fdn Sci, Bilbao, Spain
[4] Romanian Acad, Sim Stoilow Inst, Bucharest, Romania
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2025年 / 481卷 / 2307期
关键词
nematic colloids; liquid-crystal hydrodynamics; homogenization of non-Newtonian fluids; NAVIER-STOKES EQUATIONS; DOMAIN; MODEL;
D O I
10.1098/rspa.2024.0192
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper analytically explores a simplified model for the hydrodynamics of nematic liquid crystal colloids. We integrate a Stokes equation for the velocity field with a Ginzburg-Landau transported heat flow for the director field. The study focuses on a bounded spatial domain containing periodically distributed colloidal particles with no-anchoring conditions on the nematic liquid crystal. By progressively reducing the particle size to zero and simultaneously increasing the number of particles, we delve into the associated homogenization problem. Our analysis uncovers a form of decoupling where the velocity field asymptotically satisfies a Darcy equation, independent of the director, while the director follows a gradient flow, unaffected by the velocity field. One of the most intricate aspects of the homogenization process is the absence of an extension operator for the director field that preserves the uniform estimates related to the system's energy. We address this challenge with a novel variation of the Aubin-Lions lemma, specifically adapted for homogenization problems.
引用
收藏
页数:32
相关论文
共 31 条
[1]   Saturn ring defect around a spherical particle immersed in a nematic liquid crystal [J].
Alama, Stan ;
Bronsard, Lia ;
Golovaty, Dmitry ;
Lamy, Xavier .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
[2]   Minimizers of the Landau-de Gennes Energy Around a Spherical Colloid Particle [J].
Alama, Stan ;
Bronsard, Lia ;
Lamy, Xavier .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (01) :427-450
[3]  
ALLAIRE G, 1991, ARCH RATION MECH AN, V113, P209, DOI [10.1007/BF00375065, 10.1007/BF00375066]
[4]  
Allaire G., 1989, Asymptot. Anal., V2, P203, DOI DOI 10.3233/ASY-1989-2302
[5]  
[Anonymous], 1993, Asymptotic Anal.
[6]   Multiscale models of colloidal dispersion of particles in nematic liquid crystals [J].
Bennett, T. P. ;
D'Alessandro, G. ;
Daly, K. R. .
PHYSICAL REVIEW E, 2014, 90 (06)
[7]   MULTISCALE MODELS OF METALLIC PARTICLES IN NEMATIC LIQUID CRYSTALS [J].
Bennett, Thomas P. ;
D'Alessandro, Giampaolo ;
Daly, Keith R. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) :1228-1255
[8]   Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions [J].
Berlyand, L ;
Cioranescu, D ;
Golovaty, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (01) :97-136
[9]   Permeability through a perforated domain for the incompressible 2D Euler equations [J].
Bonnaillie-Noel, V. ;
Lacave, C. ;
Masmoudi, N. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01) :159-182
[10]   Weak nonlinear corrections for Darcy's law [J].
Bourgeat, A ;
Marusic-Paloka, E ;
Mikelic, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08) :1143-1155