MorphoActivation: Generalizing ReLU Activation Function by Mathematical Morphology

被引:2
|
作者
Velasco-Forero, Santiago [1 ]
Angulo, Jesus [1 ]
机构
[1] PSL Univ, Ctr Math Morphol CMM, MINES Paris, Paris, France
来源
DISCRETE GEOMETRY AND MATHEMATICAL MORPHOLOGY, DGMM 2022 | 2022年 / 13493卷
关键词
Matheron's representation theory; Activation function; Mathematical morphology; Deep learning; REPRESENTATIONS;
D O I
10.1007/978-3-031-19897-7_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper analyses both nonlinear activation functions and spatial max-pooling for Deep Convolutional Neural Networks (DCNNs) by means of the algebraic basis of mathematical morphology. Additionally, a general family of activation functions is proposed by considering both max-pooling and nonlinear operators in the context of morphological representations. Experimental section validates the goodness of our approach on classical benchmarks for supervised learning by DCNN.
引用
收藏
页码:449 / 461
页数:13
相关论文
共 50 条
  • [1] An Empirical Study on Generalizations of the ReLU Activation Function
    Banerjee, Chaity
    Mukherjee, Tathagata
    Pasiliao, Eduardo, Jr.
    PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019), 2019, : 164 - 167
  • [2] The Multi-phase ReLU Activation Function
    Banerjee, Chaity
    Mukherjee, Tathagata
    Pasiliao, Eduardo, Jr.
    ACMSE 2020: PROCEEDINGS OF THE 2020 ACM SOUTHEAST CONFERENCE, 2020, : 239 - 242
  • [3] RMAF: Relu-Memristor-Like Activation Function for Deep Learning
    Yu, Yongbin
    Adu, Kwabena
    Tashi, Nyima
    Anokye, Patrick
    Wang, Xiangxiang
    Ayidzoe, Mighty Abra
    IEEE ACCESS, 2020, 8 : 72727 - 72741
  • [4] Learnable Leaky ReLU (LeLeLU): An Alternative Accuracy-Optimized Activation Function
    Maniatopoulos, Andreas
    Mitianoudis, Nikolaos
    INFORMATION, 2021, 12 (12)
  • [5] Hypercomplex Mathematical Morphology
    Angulo, Jesus
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 41 (1-2) : 86 - 108
  • [6] Optimization of ReLU Activation Function for Deep-Learning-based Breast Cancer Classification on Mammogram Images
    Razali, Noor Fadzilah
    Isa, Iza Sazanita
    Sulaiman, Siti Noraini
    Osman, Muhammad Khusairi
    Karim, Noor Khairiah A.
    Nordin, Siti Aminah
    2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS, I2CACIS 2024, 2024, : 267 - 272
  • [7] Global-connected network with generalized ReLU activation
    Chen, Zhi
    Ho, Pin-Han
    PATTERN RECOGNITION, 2019, 96
  • [8] Deep Learning-Based Beamforming for Millimeter-Wave Systems Using Parametric ReLU Activation Function
    Alshimaa H. Ismail
    Tarek Abed Soliman
    Mohamed Rihan
    Moawad I. Dessouky
    Wireless Personal Communications, 2023, 129 : 825 - 836
  • [9] Deep Learning-Based Beamforming for Millimeter-Wave Systems Using Parametric ReLU Activation Function
    Ismail, Alshimaa H. H.
    Soliman, Tarek Abed
    Rihan, Mohamed
    Dessouky, Moawad I. I.
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 129 (02) : 825 - 836
  • [10] ONLINE FUNCTION MINIMIZATION WITH CONVEX RANDOM RELU EXPANSIONS
    Bliek, Laurens
    Verhaegen, Michel
    Wahls, Sander
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,