Collaborative Prediction of Drug-target Interaction using Sequence-based CNN and Transformer

被引:0
作者
Li, Huiting
Zhang, Weiyu [1 ]
Shang, Yong
Lu, Wenpeng
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Natl Supercomp Ctr Jinan, Minist Educ,Shandong Comp Sci Ctr,Key Lab Comp Po, Jinan, Peoples R China
来源
PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Drug-target interaction; Collaborative prediction; Transformer; Convolutional neural network;
D O I
10.1109/CSCWD61410.2024.10580505
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Drug-target interaction (DTI) prediction is a critical step in drug discovery. Deep learning has shown great potential in DTI prediction. In recent years, many sequence-based DTI prediction methods have been proposed. However, the current methods do not fully represent drugs and proteins and ignore the local and global features of these molecules. In response to these challenges, we propose a sequence-based CNN and Transformer collaborative prediction method (SCTDTI) for drug-target interaction. We train and evaluate our proposed approach on two public drug-target datasets, and experimental results show that SCTDTI improves DTI prediction performance compared to state-of-the-art baselines.
引用
收藏
页码:2276 / 2281
页数:6
相关论文
共 27 条
  • [1] Machine learning approaches and databases for prediction of drug-target interaction: a survey paper
    Bagherian, Maryam
    Sabeti, Elyas
    Wang, Kai
    Sartor, Maureen A.
    Nikolovska-Coleska, Zaneta
    Najarian, Kayvan
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) : 247 - 269
  • [2] Bian J., 2023, BRIEF BIOINFORM, V24
  • [3] TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments
    Chen, Lifan
    Tan, Xiaoqin
    Wang, Dingyan
    Zhong, Feisheng
    Liu, Xiaohong
    Yang, Tianbiao
    Luo, Xiaomin
    Chen, Kaixian
    Jiang, Hualiang
    Zheng, Mingyue
    [J]. BIOINFORMATICS, 2020, 36 (16) : 4406 - 4414
  • [4] Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences
    Chen, Wei
    Chen, Guanxing
    Zhao, Lu
    Chen, Calvin Yu-Chian
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (25) : 5633 - 5642
  • [5] IIFDTI: predicting drug-target interactions through interactive and independent features based on attention mechanism
    Cheng, Zhongjian
    Zhao, Qichang
    Li, Yaohang
    Wang, Jianxin
    [J]. BIOINFORMATICS, 2022, 38 (17) : 4153 - 4161
  • [6] Comprehensive analysis of kinase inhibitor selectivity
    Davis, Mindy I.
    Hunt, Jeremy P.
    Herrgard, Sanna
    Ciceri, Pietro
    Wodicka, Lisa M.
    Pallares, Gabriel
    Hocker, Michael
    Treiber, Daniel K.
    Zarrinkar, Patrick P.
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (11) : 1046 - U124
  • [7] MolTrans: Molecular Interaction Transformer for drug-target interaction prediction
    Huang, Kexin
    Xiao, Cao
    Glass, Lucas M.
    Sun, Jimeng
    [J]. BIOINFORMATICS, 2021, 37 (06) : 830 - 836
  • [8] CoaDTI: multi-modal co-attention based framework for drug-target interaction annotation
    Huang, Lei
    Lin, Jiecong
    Liu, Rui
    Zheng, Zetian
    Meng, Lingkuan
    Chen, Xingjian
    Li, Xiangtao
    Wong, Ka-Chun
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [9] DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences
    Lee, Ingo
    Keum, Jongsoo
    Nam, Hojung
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (06)
  • [10] A review on compound-protein interaction prediction methods: Data, format, representation and model
    Lim, Sangsoo
    Lu, Yijingxiu
    Cho, Chang Yun
    Sung, Inyoung
    Kim, Jungwoo
    Kim, Youngkuk
    Park, Sungjoon
    Kim, Sun
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 1541 - 1556