Numerical approximation of the space-time fractional diffusion problem

被引:1
|
作者
Pellegrino, Enza [1 ]
Pitolli, Francesca [2 ]
Sorgentone, Chiara [2 ]
机构
[1] Univ LAquila, Dept Ind & Informat Engn & Econ, I-67040 Roio Poggio, Italy
[2] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via Antonio Scarpa 16, I-00161 Rome, Italy
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 12期
关键词
Fractional Calculus; Riesz-Caputo Operator; B-Spline; Collocation Method; Greville Abscissae;
D O I
10.1016/j.ifacol.2024.08.222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fractional differential equations have become central tools for the accurate modeling of real-world phenomena in various fields. This work focuses on the discretization of the space-time fractional diffusion problem with Caputo derivative in time and Riesz-Caputo derivative in space. We introduce a collocation method based on a B-spline representation of the solution. This approach strategically exploits the symmetry properties of both the spline basis functions and the Riesz-Caputo operator, resulting in an efficient method for solving the given fractional differential problem. Preliminary numerical tests are presented to validate the proposed collocation method. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:390 / 394
页数:5
相关论文
共 50 条
  • [1] Numerical Approximation of Space-Time Fractional Parabolic Equations
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 679 - 705
  • [2] On the numerical solution of space-time fractional diffusion models
    Hanert, Emmanuel
    COMPUTERS & FLUIDS, 2011, 46 (01) : 33 - 39
  • [3] NUMERICAL SIMULATIONS FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS
    Ling, Leevan
    Yamamoto, Masahiro
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (02)
  • [4] Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations
    Wali, Mubashara
    Arshad, Sadia
    Eldin, Sayed M.
    Siddique, Imran
    AIMS MATHEMATICS, 2023, 8 (07): : 15129 - 15147
  • [5] Numerical approximation of an interface problem for fractional in time diffusion equation
    Delic, Aleksandra
    Jovanovic, Bogko S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 467 - 479
  • [6] Inverse source problem for a space-time fractional diffusion equation
    Mohamed BenSaleh
    Hassine Maatoug
    Ricerche di Matematica, 2024, 73 : 681 - 713
  • [7] Inverse source problem for a space-time fractional diffusion equation
    BenSaleh, Mohamed
    Maatoug, Hassine
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 681 - 713
  • [8] INVERSE SOURCE PROBLEM FOR A SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 844 - 863
  • [9] INverse Source Problem for a Space-Time Fractional Diffusion Equation
    Muhammad Ali
    Sara Aziz
    Salman A. Malik
    Fractional Calculus and Applied Analysis, 2018, 21 : 844 - 863
  • [10] Approximation of Space-Time Fractional Equations
    Capitanelli, Raffaela
    D'Ovidio, Mirko
    FRACTAL AND FRACTIONAL, 2021, 5 (03)