Advancing Silicon Surface Passivation by Copper Doped Zinc Oxide and Graphene Oxide Nanocomposite Thin Films

被引:0
作者
Salem, Moez [1 ]
Haouas, Amel [2 ]
Almohammedi, Abdullah [3 ]
Ghannam, Hajar [4 ]
机构
[1] Fac Sci Gabes, Dept Phys, Gabes 6079, Tunisia
[2] Northern Border Univ, Fac Sci, Dept Chem, Ar Ar, Saudi Arabia
[3] Islamic Univ Madinah, Fac Sci, Dept Phys, Madinah 42351, Saudi Arabia
[4] ERCMN, Mat Syst & Energy Engn Lab Maseel, UAE U01FST, Tanger 9000, Morocco
关键词
Silicon; Surface treatment; Passivation; ZnO/Graphene oxide; NANOCRYSTALS;
D O I
10.1007/s12633-025-03282-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Copper (Cu)-doped Zinc Oxide (ZnO)-Graphene Oxide (GO) nanostructures (0, 0.5, 1, and 2 at.%) were synthesized via hydrothermal methods and deposited on silicon substrates using spin coating. XRD analysis revealed well-crystallized ZnO nanoparticles with crystallite sizes between 79 and 108 nm, while Cu doping induced lattice distortions, reflected by increased microstrain and dislocation density. AFM measurements showed a reduction in surface roughness and improved homogeneity with Cu doping. Optical characterizations indicated a reduction in the band gap (from 3.26 eV to 3.24 eV) and a decrease in photoluminescence intensity of the visible band, suggesting degradation of recombination sites. Reflectance measurements confirmed enhanced light absorption with higher Cu doping. Carrier lifetime increased significantly, reaching 165 mu s at 2% Cu doping, highlighting improved charge carrier dynamics. These results demonstrate that Cu-doped ZnO-GO nanocomposites are promising candidates for enhanced surface passivation in silicon-based photovoltaic devices.
引用
收藏
页码:1403 / 1411
页数:9
相关论文
共 40 条
[1]   Enhanced the Cu2+ doping on the structural, optical and electrical properties of zinc oxide (ZnO) nanoparticles for electronic device applications [J].
Ahmed, Kashif ;
Mehboob, Nasir ;
Zaman, Abid ;
Ali, Asad ;
Mushtaq, Muhammad ;
Ahmad, Danyal ;
Ahmed, Nabeel ;
Sultana, Fozia ;
Bashir, Khalid ;
Amami, Mongi ;
Althubeiti, Khaled ;
Tirth, Vineet .
JOURNAL OF LUMINESCENCE, 2022, 250
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]  
Benramache S, 2013, J NANOSTRUCTURE CHEM, V3, DOI 10.1186/2193-8865-3-80
[4]   Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications [J].
Chen, Da ;
Feng, Hongbin ;
Li, Jinghong .
CHEMICAL REVIEWS, 2012, 112 (11) :6027-6053
[5]  
De B., 2020, HDB NANOCOMPOSITE SU, DOI 10.1007/978-3-030-52359-612
[6]   High-Efficiency Graphene-Oxide/Silicon Solar Cells with an Organic-Passivated Interface [J].
Gao, Qing ;
Yan, Jun ;
Wan, Lu ;
Zhang, Cuili ;
Wen, Zhixi ;
Zhou, Xin ;
Li, Han ;
Li, Feng ;
Chen, Jingwei ;
Guo, Jianxin ;
Song, Dengyuan ;
Flavel, Benjamin S. ;
Chen, Jianhui .
ADVANCED MATERIALS INTERFACES, 2022, 9 (24)
[7]   Activation of Al2O3 surface passivation of silicon: Separating bulk and surface effects [J].
Grant, N. E. ;
Pain, S. L. ;
Khorani, E. ;
Jefferies, R. ;
Wratten, A. ;
Mcnab, S. ;
Walker, D. ;
Han, Y. ;
Beanland, R. ;
Bonilla, R. S. ;
Murphy, J. D. .
APPLIED SURFACE SCIENCE, 2024, 645
[8]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[9]   A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes [J].
Hussain, Syed Zakir ;
Ihrar, Muhammad ;
Hussain, Syed Babar ;
Oh, Won Chun ;
Ullah, Kefayat .
SN APPLIED SCIENCES, 2020, 2 (04)
[10]   The enhancement of electrical properties of TiO2/xCoFe2O4 nanocomposites for extended applications [J].
Ibrahim, R. S. ;
Hameed, Talaat A. ;
Rady, K. E. ;
Azab, A. A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (18)