Quantum-Fractal-Fractional Operator in a Complex Domain

被引:0
作者
Attiya, Adel A. [1 ,2 ]
Ibrahim, Rabha W. [3 ]
Hakami, Ali H. [4 ]
Cho, Nak Eun [5 ]
Yassen, Mansour F. [6 ,7 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail 81451, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Thi Qar 64001, Iraq
[4] Jazan Univ, Coll Sci, Dept Math, POB 2097, Jazan 45142, Saudi Arabia
[5] Pukyong Natl Univ, Dept Appl Math, Busan 48513, South Korea
[6] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Aflaj, Dept Math, Al Aflaj 11912, Saudi Arabia
[7] Damietta Univ, Fac Sci, Dept Math, New Damietta 34517, Egypt
关键词
fractal-fractional operator; fractional calculus; quantum calculus; analytic function; differential subordination; univalent function; differential operator; subordination and superordination; convolution (Hadamard) product;
D O I
10.3390/axioms14010057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this effort, we extend the fractal-fractional operators into the complex plane together with the quantum calculus derivative to obtain a quantum-fractal-fractional operators (QFFOs). Using this newly created operator, we create an entirely novel subclass of analytical functions in the unit disk. Motivated by the concept of differential subordination, we explore the most important geometric properties of this novel operator. This leads to a study on a set of differential inequalities in the open unit disk. We focus on the conditions to obtain a bounded turning function of QFFOs. Some examples are considered, involving special functions like Bessel and generalized hypergeometric functions.
引用
收藏
页数:19
相关论文
共 27 条
  • [1] A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations
    Abro, Kashif Ali
    Atangana, Abdon
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02)
  • [2] Image Denoising Based on Quantum Calculus of Local Fractional Entropy
    Al-Shamasneh, Ala'a R.
    Ibrahim, Rabha W.
    [J]. SYMMETRY-BASEL, 2023, 15 (02):
  • [3] Specific Classes of Analytic Functions Communicated with a Q-Differential Operator Including a Generalized Hypergeometic Function
    Alarifi, Najla M.
    Ibrahim, Rabha W.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [4] A new parametric differential operator generalized a class of d'Alembert's equations
    Aldawish, Ibtisam
    Ibrahim, Rabha W.
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2021, 15 (01): : 449 - 457
  • [5] Analysis of fractal fractional differential equations
    Atangana, Abdon
    Akgul, Ali
    Owolabi, Kolade M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1117 - 1134
  • [6] Modeling attractors of chaotic dynamical systems with fractal-fractional operators
    Atangana, Abdon
    Qureshi, Sania
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 123 : 320 - 337
  • [8] Jackson Differential Operator Associated with Generalized Mittag-Leffler Function
    Attiya, Adel A.
    Yassen, Mansour F.
    Albaid, Abdelhamid
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [9] A Differential Operator Associated with q-Raina Function
    Attiya, Adel A.
    Ibrahim, Rabha W.
    Albalahi, Abeer M.
    Ali, Ekram E.
    Bulboaca, Teodor
    [J]. SYMMETRY-BASEL, 2022, 14 (08):
  • [10] A robust study on the listeriosis disease by adopting fractal-fractional operators
    Bonyah, Ebenezer
    Yavuz, Mehmet
    Baleanu, Dumitru
    Kumar, Sunil
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (03) : 2016 - 2028