Residual risk prediction in anticoagulated patients with atrial fibrillation using machine learning: A report from the GLORIA-AF registry phase II/III

被引:4
作者
Liu, Yang [1 ,2 ,3 ]
Chen, Yang [1 ,2 ]
Olier, Ivan [1 ,2 ,4 ]
Ortega-Martorell, Sandra [1 ,2 ,4 ]
Huang, Bi [1 ,2 ,5 ]
Ishiguchi, Hironori [1 ,2 ,6 ]
Lam, Ho Man [1 ,2 ]
Hong, Kui [2 ,3 ,7 ,8 ]
Huisman, Menno V. [9 ]
Lip, Gregory Y. H. [1 ,2 ,10 ]
机构
[1] Univ Liverpool, Liverpool John Moores Univ, Liverpool Ctr Cardiovasc Sci, Liverpool, England
[2] Liverpool Heart & Chest Hosp, Liverpool, England
[3] Nanchang Univ, Affiliated Hosp 2, Jiangxi Med Coll, Dept Cardiovasc Med, Nanchang, Jiangxi, Peoples R China
[4] Liverpool John Moores Univ, Data Sci Res Ctr, Liverpool, England
[5] Chongqing Med Univ, Affiliated Hosp 1, Dept Cardiol, Chongqing, Peoples R China
[6] Yamaguchi Univ, Grad Sch Med, Dept Med & Clin Sci, Div Cardiol, Ube, Japan
[7] Nanchang Univ, Affiliated Hosp 2, Dept Genet Med, Nanchang, Jiangxi, Peoples R China
[8] Nanchang Univ, Affiliated Hosp 2, Jiangxi Key Lab Mol Med, Nanchang, Peoples R China
[9] Leiden Univ, Med Ctr, Dept Med Thrombosis & Hemostasis, Leiden, Netherlands
[10] Aalborg Univ, Dept Clin Med, Aalborg, Denmark
关键词
atrial fibrillation; machine learning; oral anticoagulant; residual risk; CHRONIC KIDNEY-DISEASE; SYSTEMIC EMBOLISM; STROKE RISK; STRATIFICATION; WARFARIN; THROMBOEMBOLISM; SELECTION;
D O I
10.1111/eci.14371
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundAlthough oral anticoagulation decreases the risk of thromboembolism in patients with atrial fibrillation (AF), a residual risk of thrombotic events still exists. This study aimed to construct machine learning (ML) models to predict the residual risk in these patients.MethodsPatients with newly diagnosed non-valvular AF were collected from the Global Registry on Long-Term Oral Anti-Thrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF) registry. To predict the residual risk of the composite outcome of thrombotic events (defined as ischemic stroke, systemic embolism, transient ischemic attack and myocardial infarction), we constructed four prediction models using the logistic regression (LR), random forest, light gradient boosting machine and extreme gradient boosting machine ML algorithms. Performance was mainly evaluated by area under the receiver-operating characteristic curve (AUC), g-means and F1 scores. Feature importance was evaluated by SHapley Additive exPlanations.Results15,829 AF patients (70.33 +/- 9.94 years old, 55% male) taking oral anticoagulation were included in our study, and 641 (4.0%) had residual risk, sustaining thrombotic events. In the test set, LR had the best performance with higher AUC trend of 0.712. RF has highest g-means of 0.295 and F1 score of 0.249. This was superior when compared with the CHA2DS2-VA score (AUC 0.698) and 2MACE score (AUC 0.696). Age, history of TE or MI, OAC discontinuation, eGFR and sex were identified as the top five factors associated with residual risk.ConclusionML algorithms can improve the prediction of residual risk of anticoagulated AF patients compared to clinical risk factor-based scores.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Risk of Stroke or Systemic Embolism in Atrial Fibrillation Patients Treated With Warfarin A Systematic Review and Meta-analysis [J].
Albertsen, Ida Ehlers ;
Rasmussen, Lars Hvilsted ;
Overvad, Thure Filskov ;
Graungaard, Tina ;
Larsen, Torben Bjerregaard ;
Lip, Gregory Y. H. .
STROKE, 2013, 44 (05) :1329-+
[2]   Mechanisms of Plaque Formation and Rupture [J].
Bentzon, Jacob Fog ;
Otsuka, Fumiyuki ;
Virmani, Renu ;
Falk, Erling .
CIRCULATION RESEARCH, 2014, 114 (12) :1852-1866
[3]   Outcomes of patients with atrial fibrillation and ischemic stroke while on oral anticoagulation [J].
Benz, Alexander P. ;
Hohnloser, Stefan H. ;
Eikelboom, John W. ;
Carnicelli, Anthony P. ;
Giugliano, Robert P. ;
Granger, Christopher B. ;
Harrington, Josephine ;
Hijazi, Ziad ;
Morrow, David A. ;
Patel, Manesh R. ;
Seiffge, David J. ;
Shoamanesh, Ashkan ;
Wallentin, Lars ;
Yi, Qilong ;
Connolly, Stuart J. .
EUROPEAN HEART JOURNAL, 2023, 44 (20) :1807-1814
[4]   Residual stroke risk despite oral anticoagulation in patients with atrial fibrillation [J].
Carlisle, Matthew A. ;
Shrader, Peter ;
Fudim, Marat ;
Pieper, Karen S. ;
Blanco, Rosalia G. ;
Fonarow, Gregg C. ;
Naccarelli, Gerald V. ;
Gersh, Bernard J. ;
Reiffel, James A. ;
Kowey, Peter R. ;
Steinberg, Benjamin A. ;
Freeman, James V. ;
Ezekowitz, Michael D. ;
Singer, Daniel E. ;
Allen, Larry A. ;
Chan, Paul S. ;
Pokorney, Sean D. ;
Peterson, Eric D. ;
Piccini, Jonathan P. .
HEART RHYTHM O2, 2022, 3 (06) :621-628
[5]   Gender and contemporary risk of adverse events in atrial fibrillation [J].
Champsi, Asgher ;
Mobley, Alastair R. ;
Subramanian, Anuradhaa ;
Nirantharakumar, Krishnarajah ;
Wang, Xiaoxia ;
Shukla, David ;
Bunting, Karina, V ;
Molgaard, Inge ;
Dwight, Jeremy ;
Casado Arroyo, Ruben ;
Crijns, Harry J. G. M. ;
Guasti, Luigina ;
Lettino, Maddalena ;
Lumbers, R. Thomas ;
Maesen, Bart ;
Rienstra, Michiel ;
Svennberg, Emma ;
Tica, Otilia ;
Traykov, Vassil ;
Tzeis, Stylianos ;
van Gelder, Isabelle ;
Kotecha, Dipak .
EUROPEAN HEART JOURNAL, 2024, 45 (36) :3707-3717
[6]   Nonvitamin K Anticoagulant Agents in Patients With Advanced Chronic Kidney Disease or on Dialysis With AF [J].
Chan, Kevin E. ;
Giugliano, Robert P. ;
Patel, Manesh R. ;
Abramson, Stuart ;
Jardine, Meg ;
Zhao, Sophia ;
Perkovic, Vlado ;
Maddux, Franklin W. ;
Piccini, Jonathan P. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 67 (24) :2888-2899
[7]   Atrial fibrillation: stroke prevention [J].
Chao, Tze-Fan ;
Potpara, Tatjana S. ;
Lip, Gregory Y. H. .
LANCET REGIONAL HEALTH-EUROPE, 2024, 37
[8]   Predicting stroke in Asian patients with atrial fibrillation using machine learning: A report from the KERALA-AF registry, with external validation in the APHRS-AF registry [J].
Chen, Yang ;
Gue, Ying ;
Calvert, Peter ;
Gupta, Dhiraj ;
McDowell, Garry ;
Azariah, Jinbert Lordson ;
Namboodiri, Narayanan ;
Bucci, Tommaso ;
Jabir, A. ;
Tse, Hung Fat ;
Chao, Tze-Fan ;
Lip, Gregory Y. H. ;
Bahuleyan, Charantharayil Gopalan .
CURRENT PROBLEMS IN CARDIOLOGY, 2024, 49 (04)
[9]   Machine Learning-Based Predictive Models for Patients with Venous Thromboembolism: A Systematic Review [J].
Danilatou, Vasiliki ;
Dimopoulos, Dimitrios ;
Kostoulas, Theodoros ;
Douketis, James .
THROMBOSIS AND HAEMOSTASIS, 2024, 124 (11) :1040-1052
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845