Improving Molecular Arrangement and Alleviating Nonradiative Energy Loss Using a Chlorinated Pyrido[3,4-b]Quinoxaline-Core-Based Acceptor for High-Performance Organic Solar Cells

被引:0
作者
Tian, Han [1 ]
Luo, Yongmin [2 ]
Chen, Zhanxiang [1 ]
Xu, Tongle [1 ]
Ma, Ruijie [3 ]
Wu, Jiaying [2 ]
Li, Gang [3 ]
Yang, Chuluo [1 ]
Luo, Zhenghui [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Prov Key Lab New Energy Mat Serv Safety, Shenzhen Key Lab New Informat Display & Storage Ma, Shenzhen 518060, Peoples R China
[2] Hong Kong Univ Sci & Technol Guangzhou, Adv Mat Thrust, Funct Hub, Guangzhou 511400, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Smart Energy RISE, Photon Res Inst PRI, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
molecular packing; nonradiative energy loss; organic solar cells; power conversion efficiency; small-molecule acceptors; EFFICIENCY; EXCITON;
D O I
10.1002/aenm.202404537
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electron-deficient A1 unit in A-DA1D-A structured acceptors is critical for optimizing the efficiency of organic solar cells (OSCs). Drawing inspiration from the high performance of the previously reported pyrido[2,3-b]quinoxaline-core acceptors, Py6, an isomer of Py1 is designed with a repositioned pyridine nitrogen atom, and further modified it by chlorinating Py6 to create Py7. Theoretical calculations show that chlorine incorporation strengthens intermolecular non-covalent interactions and promotes the tighter molecular stacking, as confirmed by grazing-incidence wide-angle X-ray scattering. Consequently, D18/Py7 device delivers the enhanced fill factor and short-circuit current density, compared to D18/Py1 and D18/Py6 device. Notably, D18/Py7 device also yields a higher open-circuit voltage of 0.871 V, significantly outperforming Py1 (0.764 V) and Py6 (0.723 V), due to the low nonradiative energy losses. Further studies reveal that introducing Cl directs hole density toward the central pyrido[3,4-b]quinoxaline unit and decreases the charge transfer state ratio of D18/acceptor. This prompts triplet-to-singlet conversion and reduces non-radiative recombination losses. Additionally, using a mutual donor-acceptor dilution strategy, the (D18:1wt.% Py7)/(Py7:1wt.% D18) device achieves an impressive efficiency of 19.60%. This work emphasizes the great potential of the Py-series acceptors and demonstrates that chlorine incorporation effectively reduces non-radiative losses.
引用
收藏
页数:10
相关论文
共 60 条
  • [1] Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%
    Chen, Chen
    Wang, Liang
    Xia, Weiyi
    Qiu, Ke
    Guo, Chuanhang
    Gan, Zirui
    Zhou, Jing
    Sun, Yuandong
    Liu, Dan
    Li, Wei
    Wang, Tao
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Central Unit Fluorination of Non-Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency
    Chen, Hongbin
    Liang, Huazhe
    Guo, Ziqi
    Zhu, Yu
    Zhang, Zhe
    Li, Zhixiang
    Cao, Xiangjian
    Wang, Haohui
    Feng, Wanying
    Zou, Yalu
    Meng, Lingxian
    Xu, Xiaoyun
    Bin Kan
    Li, Chenxi
    Yao, Zhaoyang
    Wan, Xiangjian
    Ma, Zaifei
    Chen, Yongsheng
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (41)
  • [3] A unified description of non-radiative voltage losses in organic solar cells
    Chen, Xian-Kai
    Qian, Deping
    Wang, Yuming
    Kirchartz, Thomas
    Tress, Wolfgang
    Yao, Huifeng
    Yuan, Jun
    Huelsbeck, Markus
    Zhang, Maojie
    Zou, Yingping
    Sun, Yanming
    Li, Yongfang
    Hou, Jianhui
    Inganas, Olle
    Coropceanu, Veaceslav
    Bredas, Jean-Luc
    Gao, Feng
    [J]. NATURE ENERGY, 2021, 6 (08) : 799 - 806
  • [4] 20.2% Efficiency Organic Photovoltaics Employing a π-Extension Quinoxaline-Based Acceptor with Ordered Arrangement
    Chen, Zhenyu
    Ge, Jinfeng
    Song, Wei
    Tong, Xinyu
    Liu, Hui
    Yu, Xueliang
    Li, Jing
    Shi, Jingyu
    Xie, Lin
    Han, Chengcheng
    Liu, Quan
    Ge, Ziyi
    [J]. ADVANCED MATERIALS, 2024, 36 (33)
  • [5] Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination
    Chong, Kaien
    Xu, Xiaopeng
    Meng, Huifeng
    Xue, Jingwei
    Yu, Liyang
    Ma, Wei
    Peng, Qiang
    [J]. ADVANCED MATERIALS, 2022, 34 (13)
  • [6] Impact of Electrostatic Interaction on Non-radiative Recombination Energy Losses in Organic Solar Cells Based on Asymmetric Acceptors
    Cui, Yongjie
    Zhu, Peipei
    Hu, Huawei
    Xia, Xinxin
    Lu, Xinhui
    Yu, Shicheng
    Tempeld, Hermann
    Eichel, Ruediger-A.
    Liao, Xunfan
    Chen, Yiwang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (35)
  • [7] Critical examination of the supermolecule density functional theory calculations of intermolecular interactions
    Cybulski, SM
    Seversen, CE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01)
  • [8] Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence
    Etherington, Marc K.
    Gibson, Jamie
    Higginbotham, Heather F.
    Penfold, Thomas J.
    Monkman, Andrew P.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [9] Rational molecular and device design enables organic solar cells approaching 20% efficiency
    Fu, Jiehao
    Yang, Qianguang
    Huang, Peihao
    Chung, Sein
    Cho, Kilwon
    Kan, Zhipeng
    Liu, Heng
    Lu, Xinhui
    Lang, Yongwen
    Lai, Hanjian
    He, Feng
    Fong, Patrick W. K.
    Lu, Shirong
    Yang, Yang
    Xiao, Zeyun
    Li, Gang
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition
    Fu, Jiehao
    Fong, Patrick W. K.
    Liu, Heng
    Huang, Chieh-Szu
    Lu, Xinhui
    Lu, Shirong
    Abdelsamie, Maged
    Kodalle, Tim
    Sutter-Fella, Carolin M.
    Yang, Yang
    Li, Gang
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)