Demystifying Quantum Gate Fidelity for Electronics Engineers

被引:0
作者
Borgarino, Mattia [1 ,2 ]
Badiali, Alessandro [1 ,3 ]
机构
[1] Univ Modena & Reggio Emilia, Enzo Ferrari Engn Dept, I-41125 Modena, Italy
[2] Consorzio Nazl Interuniv Telecomunicaz CNIT, I-43124 Parma, Italy
[3] Univ Pavia, Dept Elect Comp & Biomed Engn, I-27100 Pavia, Italy
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 05期
关键词
fidelity; quantum fidelity; RFICs; quantum gate; hyperspace integrals; energy efficiency; logical qubit; CIRCUITS;
D O I
10.3390/app15052675
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The implementation of quantum gates by means of microwave cryo-RFICs controlling qubits is a promising path toward scalable quantum processors. Quantum gate fidelity quantifies how well an actual quantum gate produces a quantum state close to the desired ideal one. Regrettably, the literature usually reports on quantum gate fidelity in a highly theoretical way, making it hard for RFIC designers to understand. This paper explains quantum gate fidelity by moving from Shannon's concept of fidelity and proposing a detailed mathematical proof of a valuable integral formulation of quantum gate fidelity. Shannon's information theory and the simple mathematics adopted for the proof are both expected to be in the background of electronics engineers. By using Shannon's fidelity, this paper rationalizes the integral formulation of quantum gate fidelity. Because of the simple mathematics adopted, this paper also demystifies to electronics engineers how this integral formulation can be reduced to a more practical algebraic product matrix. This paper makes evident the practical utility of this matrix formulation by applying it to the specific examples of one- and two-qubit quantum gates. Moreover, this paper also compares mixed states, entanglement fidelity, and the error rate's upper bound.
引用
收藏
页数:26
相关论文
共 64 条
[1]   Full quantum tomography study of Google's Sycamore gate on IBM's quantum computers [J].
AbuGhanem, Muhammad ;
Eleuch, Hichem .
EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
[2]   Quantum error correction below the surface code threshold [J].
Acharya, Rajeev ;
Abanin, Dmitry A. ;
Aghababaie-Beni, Laleh ;
Aleiner, Igor ;
Andersen, Trond I. ;
Ansmann, Markus ;
Arute, Frank ;
Arya, Kunal ;
Asfaw, Abraham ;
Astrakhantsev, Nikita ;
Atalaya, Juan ;
Babbush, Ryan ;
Bacon, Dave ;
Ballard, Brian ;
Bardin, Joseph C. ;
Bausch, Johannes ;
Bengtsson, Andreas ;
Bilmes, Alexander ;
Blackwell, Sam ;
Boixo, Sergio ;
Bortoli, Gina ;
Bourassa, Alexandre ;
Bovaird, Jenna ;
Brill, Leon ;
Broughton, Michael ;
Browne, David A. ;
Buchea, Brett ;
Buckley, Bob B. ;
Buell, David A. ;
Burger, Tim ;
Burkett, Brian ;
Bushnell, Nicholas ;
Cabrera, Anthony ;
Campero, Juan ;
Chang, Hung-Shen ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Chik, Desmond ;
Chou, Charina ;
Claes, Jahan ;
Cleland, Agnetta Y. ;
Cogan, Josh ;
Collins, Roberto ;
Conner, Paul ;
Courtney, William ;
Crook, Alexander L. ;
Curtin, Ben ;
Das, Sayan ;
Davies, Alex .
NATURE, 2024, :920-926
[3]   CMOS Integrated Circuits for the Quantum Information Sciences [J].
Anders, Jens ;
Babaie, Masoud ;
Bardin, Joseph C. ;
Bashir, Imran ;
Billiot, Gerard ;
Blokhina, Elena ;
Bonen, Shai ;
Charbon, Edoardo ;
Chiaverini, John ;
Chuang, Isaac L. ;
Degenhardt, Carsten ;
Englund, Dirk ;
Geck, Lotte ;
Le Guevel, Loick ;
Ham, Donhee ;
Han, Ruonan ;
Ibrahim, Mohamed I. ;
Kruger, Daniel ;
Lei, Ka Meng ;
Morel, Adrien ;
Nielinger, Dennis ;
Pillonnet, Gael ;
Sage, Jeremy M. ;
Sebastiano, Fabio ;
Staszewski, Robert Bogdan ;
Stuart, Jules ;
Vladimirescu, Andrei ;
Vliex, Patrick ;
Voinigescu, Sorin P. .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2023, 4
[4]  
[Anonymous], SCIENCE
[5]   Quantum Technologies Need a Quantum Energy Initiative [J].
Auffeves, Alexia .
PRX QUANTUM, 2022, 3 (02)
[6]   Cryo-CMOS Multi-Frequency Modulator for 2-Qubit Controller [J].
Badiali, Alessandro ;
Borgarino, Mattia .
ELECTRONICS, 2024, 13 (13)
[7]   Efficiently computing the Uhlmann fidelity for density matrices [J].
Baldwin, Andrew J. ;
Jones, Jonathan A. .
PHYSICAL REVIEW A, 2023, 107 (01)
[8]   A Low-Power CMOS Quantum Controller for Transmon Qubits [J].
Bardin, J. C. .
2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
[9]   Microwaves in Quantum Computing [J].
Bardin, Joseph C. ;
Slichter, Daniel H. ;
Reilly, David J. .
IEEE JOURNAL OF MICROWAVES, 2021, 1 (01) :403-427
[10]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503