Model Predictive Contouring Control for Vehicle Obstacle Avoidance at the Limit of Handling Using Torque Vectoring

被引:2
作者
Bertipaglia, Alberto [1 ]
Tavernini, Davide [2 ]
Montanaro, Umberto [2 ]
Alirezaei, Mohsen [3 ]
Happee, Riender [1 ]
Sorniotti, Aldo [4 ]
Shyrokau, Barys [1 ]
机构
[1] Delft Univ Technol, Dept Cognit Robot, NL-2628 CD Delft, Netherlands
[2] Univ Surrey, Ctr Automot Engn, Guildford GU2 7XH, Surrey, England
[3] Univ Eindhoven, Dept Mech Engn, NL-5612 AZ Eindhoven, Netherlands
[4] Politecn Torino, Dept Mech & Aerosp Engn, I-10129 Turin, Italy
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, AIM 2024 | 2024年
基金
欧盟地平线“2020”;
关键词
D O I
10.1109/AIM55361.2024.10637113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an original approach to vehicle obstacle avoidance. It involves the development of a nonlinear Model Predictive Contouring Control, which uses torque vectoring to stabilise and drive the vehicle in evasive manoeuvres at the limit of handling. The proposed algorithm combines motion planning, path tracking and vehicle stability objectives, prioritising collision avoidance in emergencies. The controller's prediction model is a nonlinear double-track vehicle model based on an extended Fiala tyre to capture the nonlinear coupled longitudinal and lateral dynamics. The controller computes the optimal steering angle and the longitudinal forces per each of the four wheels to minimise tracking error in safe situations and maximise the vehicle-to-obstacle distance in emergencies. Thanks to the optimisation of the longitudinal tyre forces, the proposed controller can produce an extra yaw moment, increasing the vehicle's lateral agility to avoid obstacles while keeping the vehicle stable. The optimal forces are constrained in the tyre friction circle not to exceed the tyres and vehicle capabilities. In a high-fidelity simulation environment, we demonstrate the benefits of torque vectoring, showing that our proposed approach is capable of successfully avoiding obstacles and keeping the vehicle stable while driving a double-lane change manoeuvre, in comparison to baselines lacking torque vectoring or collision avoidance prioritisation.
引用
收藏
页码:1468 / 1475
页数:8
相关论文
共 25 条
[1]  
Bertipaglia A, 2022, Arxiv, DOI arXiv:2206.15119
[2]  
Bertipaglia A., 2024, IEEE T VEHICULAR TEC, P1
[3]  
Bertipaglia A, 2023, Arxiv, DOI arXiv:2308.06742
[4]   A Two-Stage Bayesian Optimisation for Automatic Tuning of an Unscented Kalman Filter for Vehicle Sideslip Angle Estimation [J].
Bertipaglia, Alberto ;
Shyrokau, Barys ;
Alirezaei, Mohsen ;
Happee, Riender .
2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, :670-677
[5]   Coordinating Tire Forces to Avoid Obstacles Using Nonlinear Model Predictive Control [J].
Brown, Matthew ;
Gerdes, J. Christian .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (01) :21-31
[6]   Comparison of Path Tracking and Torque-Vectoring Controllers for Autonomous Electric Vehicles [J].
Chatzikomis, Christoforos ;
Sorniotti, Aldo ;
Gruber, Patrick ;
Zanchetta, Mattia ;
Willans, Dan ;
Balcombe, Bryn .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2018, 3 (04) :559-570
[7]   Integrated nonlinear model predictive control for automated driving [J].
Chowdhri, Nishant ;
Ferranti, Laura ;
Iribarren, Felipe Santafe ;
Shyrokau, Barys .
CONTROL ENGINEERING PRACTICE, 2021, 106
[8]   Comparison of Feedback Control Techniques for Torque-Vectoring Control of Fully Electric Vehicles [J].
De Novellis, Leonardo ;
Sorniotti, Aldo ;
Gruber, Patrick ;
Pennycott, Andrew .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2014, 63 (08) :3612-3623
[9]   Scalable Slip Control With Torque Vectoring Including Input-to-State Stability Analysis [J].
Degel, Wolfgang ;
Lupberger, Stefan ;
Odenthal, Dirk ;
Bajcinca, Naim .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (03) :1250-1265
[10]   A hierarchical Model Predictive Control framework for autonomous ground vehicles [J].
Falcone, R. ;
Borrelli, F. ;
Tseng, H. E. ;
Asgari, J. ;
Hrovat, D. .
2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, :3719-+