Zero-Shot Modulation Recognition via Knowledge-Informed Waveform Description

被引:0
|
作者
Chen, Ying [1 ]
Wang, Xiang [1 ]
Huang, Zhitao [1 ,2 ]
机构
[1] Natl Univ Def Technol, State Key Lab Complex Electromagnet Environm Effec, Changsha 410000, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Engn, Hefei 230000, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Modulation; Training; Symmetric matrices; Vectors; Zero shot learning; Symbols; Visualization; Receivers; Laboratories; Automatic modulation recognition; knowledge and data joint-driven learning; zero-shot learning; graph neural networks; NETWORK;
D O I
10.1109/LSP.2024.3491013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In non-cooperative environments, deep learning-based automatic modulation recognition techniques often struggle with the situations with insufficient or even no training data accessible. In this letter, we investigate this problem in the amplitude-phase-modulation recognition task and introduce a knowledge-informed waveform description for zero-shot recognition generalization. Specifically, drawing inspiration from constellation association knowledge, we define a constellation-based semantic attribute set to describe waveform structures and employ graph formulation to model attributes' symmetric dependency for improving representations. Subsequently, we align the waveform and semantic spaces by associating waveform and attribute compositional representations, facilitating the transfer of knowledge from the seen to unseen domain. Our scheme can reason the labels of unseen waveform types with the guidance of the attribute description outputting, beyond merely distinguishing test instances as unseen. Experiments validate the efficacy of the proposed method across few-shot and zero-shot recognition tasks.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 50 条
  • [31] Zero-shot action recognition in videos: A survey
    Estevam, Valter
    Pedrini, Helio
    Menotti, David
    NEUROCOMPUTING, 2021, 439 : 159 - 175
  • [32] Visual Context Embeddings for Zero-Shot Recognition
    Cho, Gunhee
    Choi, Yong Suk
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1039 - 1047
  • [33] Towards Zero-Shot Sign Language Recognition
    Bilge, Yunus Can
    Cinbis, Ramazan Gokberk
    Ikizler-Cinbis, Nazli
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) : 1217 - 1232
  • [34] Adaptive Metric Learning For Zero-Shot Recognition
    Jiang, Huajie
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (09) : 1270 - 1274
  • [35] Zero-Shot SAR Target Recognition Based on Classification Assistance
    Wei, Qian-Ru
    Chen, Cheng-Yu
    He, Mingyi
    He, Hong-Mei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [36] Zero-Shot Entity Typing in Knowledge Graphs
    Zhou, Shengye
    Wang, Zhe
    Wang, Kewen
    Zhuang, Zhiqiang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS. DASFAA 2023 INTERNATIONAL WORKSHOPS, BDMS 2023, BDQM 2023, GDMA 2023, BUNDLERS 2023, 2023, 13922 : 238 - 250
  • [37] Zero-Shot Learning Based on Knowledge Sharing
    Zeng, Ting
    Xiang, Hongxin
    Xie, Cheng
    Yang, Yun
    Liu, Qing
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 643 - 648
  • [38] Zero-shot learning via visual feature enhancement and dual classifier learning for image recognition
    Zhao, Peng
    Xue, Huihui
    Ji, Xia
    Liu, Huiting
    Han, Li
    INFORMATION SCIENCES, 2023, 642
  • [39] Knowledge Graph Enhancement for Fine-Grained Zero-Shot Learning on ImageNet21K
    Chen, Xingyu
    Liu, Jiaxu
    Liu, Zeyang
    Wan, Lipeng
    Lan, Xuguang
    Zheng, Nanning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9090 - 9101
  • [40] Denoising Knowledge Transfer Model for Zero-Shot MRI Reconstruction
    Hou, Ruizhi
    Li, Fang
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2025, 11 : 52 - 64