Zero-Shot Modulation Recognition via Knowledge-Informed Waveform Description

被引:0
|
作者
Chen, Ying [1 ]
Wang, Xiang [1 ]
Huang, Zhitao [1 ,2 ]
机构
[1] Natl Univ Def Technol, State Key Lab Complex Electromagnet Environm Effec, Changsha 410000, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Engn, Hefei 230000, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Modulation; Training; Symmetric matrices; Vectors; Zero shot learning; Symbols; Visualization; Receivers; Laboratories; Automatic modulation recognition; knowledge and data joint-driven learning; zero-shot learning; graph neural networks; NETWORK;
D O I
10.1109/LSP.2024.3491013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In non-cooperative environments, deep learning-based automatic modulation recognition techniques often struggle with the situations with insufficient or even no training data accessible. In this letter, we investigate this problem in the amplitude-phase-modulation recognition task and introduce a knowledge-informed waveform description for zero-shot recognition generalization. Specifically, drawing inspiration from constellation association knowledge, we define a constellation-based semantic attribute set to describe waveform structures and employ graph formulation to model attributes' symmetric dependency for improving representations. Subsequently, we align the waveform and semantic spaces by associating waveform and attribute compositional representations, facilitating the transfer of knowledge from the seen to unseen domain. Our scheme can reason the labels of unseen waveform types with the guidance of the attribute description outputting, beyond merely distinguishing test instances as unseen. Experiments validate the efficacy of the proposed method across few-shot and zero-shot recognition tasks.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 50 条
  • [1] Hierarchical Prototype Learning for Zero-Shot Recognition
    Zhang, Xingxing
    Gui, Shupeng
    Zhu, Zhenfeng
    Zhao, Yao
    Liu, Ji
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1692 - 1703
  • [2] Deconfounding Causal Inference for Zero-Shot Action Recognition
    Wang, Junyan
    Jiang, Yiqi
    Long, Yang
    Sun, Xiuyu
    Pagnucco, Maurice
    Song, Yang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3976 - 3986
  • [3] SR2CNN: Zero-Shot Learning for Signal Recognition
    Dong, Yihong
    Jiang, Xiaohan
    Zhou, Huaji
    Lin, Yun
    Shi, Qingjiang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2316 - 2329
  • [4] Aligned Dynamic-Preserving Embedding for Zero-Shot Action Recognition
    Tian, Yi
    Kong, Yu
    Ruan, Qiuqi
    An, Gaoyun
    Fu, Yun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1597 - 1612
  • [5] Global Semantic Descriptors for Zero-Shot Action Recognition
    Estevam, Valter
    Laroca, Rayson
    Pedrini, Helio
    Menotti, David
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1843 - 1847
  • [6] Adaptive Fusion Learning for Compositional Zero-Shot Recognition
    Min, Lingtong
    Fan, Ziman
    Wang, Shunzhou
    Dou, Feiyang
    Li, Xin
    Wang, Binglu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1193 - 1204
  • [7] Zero-Shot Cross-Lingual Knowledge Transfer in VQA via Multimodal Distillation
    Weng, Yu
    Dong, Jun
    He, Wenbin
    Chaomurilige
    Liu, Xuan
    Liu, Zheng
    Gao, Honghao
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 11
  • [8] Vocabulary-Informed Zero-Shot and Open-Set Learning
    Fu, Yanwei
    Wang, Xiaomei
    Dong, Hanze
    Jiang, Yu-Gang
    Wang, Meng
    Xue, Xiangyang
    Sigal, Leonid
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (12) : 3136 - 3152
  • [9] Survey on Knowledge-based Zero-shot Visual Recognition
    Feng Y.-G.
    Yu J.
    Sang J.-T.
    Yang P.-B.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (02): : 370 - 405
  • [10] Zero-Shot Recognition via Optimal Transport
    Wang, Wenlin
    Xu, Hongteng
    Wang, Guoyin
    Wang, Wenqi
    Carin, Lawrence
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3470 - 3480