Machine learning in echocardiography-based prediction model of cardiovascular diseases

被引:0
作者
Yasheng, Zubaire [1 ,2 ,3 ]
Zhao, Ruohan [1 ,2 ,3 ]
Zhu, Ye [1 ,2 ,3 ]
Zhang, Zisang [1 ,2 ,3 ]
Lv, Qing [1 ,2 ,3 ]
Xie, Mingxing [1 ,2 ,3 ]
Zhang, Li [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Ultrasound Med, Wuhan 430022, Hubei, Peoples R China
[2] Clin Res Ctr Med Imaging Hubei Prov, Wuhan 430022, Hubei, Peoples R China
[3] Hubei Prov Key Lab Mol Imaging, Wuhan 430022, Hubei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1097/CM9.0000000000003350
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:228 / 230
页数:3
相关论文
共 50 条
[31]   An Ensemble Learning Method for Constructing Prediction Model of Cardiovascular Diseases Recurrence [J].
Lee, Yen-Hsien ;
Lin, Tin-Kwang ;
Huang, Yu-Yang ;
Chu, Tsai-Hsin .
HCI IN BUSINESS, GOVERNMENT AND ORGANIZATIONS, HCIBGO 2022, 2022, 13327 :208-220
[32]   Classification Model Based on Pathological Data for Kidney Diseases Prediction using Machine Learning Approach [J].
Elavarasi, S. Anitha ;
Venkatesan, Kannan ;
Murali, V .
JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (01) :169-177
[33]   EchoAGE: Echocardiography-based Neural Network Model Forecasting Heart Biological Age [J].
Kobelyatskaya, Anastasia A. ;
Guvatova, Zulfiya G. ;
Tkacheva, Olga N. ;
Isaev, Fedor I. ;
Kungurtseva, Anastasiia L. ;
Vitebskaya, Alisa V. ;
Kudryavtseva, Anna, V ;
Plokhova, Ekaterina, V ;
Machekhina, Lubov, V ;
Strazhesko, Irina D. ;
Moskalev, Alexey A. .
AGING AND DISEASE, 2025,
[34]   Cardiovascular phenotypes predict clinical outcomes in sickle cell disease: An echocardiography-based cluster analysis [J].
D'Humieres, Thomas ;
Savale, Laurent ;
Inamo, Jocelyn ;
Deswarte, Simon ;
Lionnet, Francois ;
Loko, Gylna ;
Chantalat, Christelle ;
Damy, Thibaud ;
Guillet, Henri ;
d'Orengiani, Anne Laure Pham Hung d'Alexandry ;
Galacteros, Frederic ;
Audureau, Etienne ;
Maitre, Bernard ;
Humbert, Marc ;
Derumeaux, Genevieve ;
Bartolucci, Pablo ;
Deux, Jean-Francois .
AMERICAN JOURNAL OF HEMATOLOGY, 2021, 96 (09) :1166-1175
[35]   Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches [J].
Sajid, Mirza Rizwan ;
Almehmadi, Bader A. ;
Sami, Waqas ;
Alzahrani, Mansour K. ;
Muhammad, Noryanti ;
Chesneau, Christophe ;
Hanif, Asif ;
Khan, Arshad Ali ;
Shahbaz, Ahmad .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (23)
[36]   Echocardiography-based pressure–volume loop assessment in the evaluation for the effects of indoxyl sulfate on cardiovascular function [J].
Masaru Obokata ;
Koji Kurosawa ;
Hideki Ishida ;
Kyoko Ito ;
Tetsuya Ogawa ;
Yoshitaka Ando ;
Masahiko Kurabayashi ;
Kazuaki Negishi .
Journal of Echocardiography, 2019, 17 :35-43
[37]   Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases [J].
Ogunpola, Adedayo ;
Saeed, Faisal ;
Basurra, Shadi ;
Albarrak, Abdullah M. ;
Qasem, Sultan Noman .
DIAGNOSTICS, 2024, 14 (02)
[38]   Efficient Data-Driven Machine Learning Models for Cardiovascular Diseases Risk Prediction [J].
Dritsas, Elias ;
Trigka, Maria .
SENSORS, 2023, 23 (03)
[39]   Identifying the Main Risk Factors for Cardiovascular Diseases Prediction Using Machine Learning Algorithms [J].
Guarneros-Nolasco, Luis Rolando ;
Cruz-Ramos, Nancy Aracely ;
Alor-Hernandez, Giner ;
Rodriguez-Mazahua, Lisbeth ;
Sanchez-Cervantes, Jose Luis .
MATHEMATICS, 2021, 9 (20)
[40]   Prediction of cardiovascular diseases by integrating multi-modal features with machine learning methods [J].
Li, Pengpai ;
Hu, Yongmei ;
Liu, Zhi-Ping .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 66