Characterization of solutions in Besov spaces for fractional Rayleigh-Stokes equations

被引:0
作者
Peng, Li [1 ]
Zhou, Yong [2 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Macau Univ Sci & Technol, Macao Ctr Math Sci, Cotai 999078, Macao Special A, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 140卷
基金
中国国家自然科学基金;
关键词
Fractional derivative; Rayleigh-Stokes equations; Besov spaces; Well-posedness; GENERALIZED 2ND-GRADE FLUID; WELL-POSEDNESS;
D O I
10.1016/j.cnsns.2024.108376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers fractional Rayleigh-Stokes equations with a power-type nonlinearity. The linear equation can be simulated a non-Newtonian fluid for a generalized second grade fluid and display a nonlocal behavior in time. Because the coexistence of fractional and classical derivatives leads to the lack of semigroup structure of the solution operator, we need to develop a suitable tool to establish some L-p - L-q estimates in the framework of L-p spaces and Besov spaces, respectively. Further, global existence of solutions is showed in spaces of Besov type.
引用
收藏
页数:12
相关论文
共 24 条
  • [1] Decay estimates for evolution equations with classical and fractional time-derivatives
    Affili, Elisa
    Valdinoci, Enrico
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (07) : 4027 - 4060
  • [2] Existence and asymptotic behaviour for the time-fractional Keller-Segel model for chemotaxis
    Azevedo, Joelma
    Cuevas, Claudio
    Henriquez, Erwin
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 462 - 480
  • [3] Subordination Principle for a Class of Fractional Order Differential Equations
    Bazhlekova, Emilia
    [J]. MATHEMATICS, 2015, 3 (02): : 412 - 427
  • [4] An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid
    Bazhlekova, Emilia
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. NUMERISCHE MATHEMATIK, 2015, 131 (01) : 1 - 31
  • [5] REGULARITY AND STABILITY ANALYSIS FOR SEMILINEAR GENERALIZED RAYLEIGH-STOKES EQUATIONS
    Do Lan
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (01): : 259 - 282
  • [6] On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on RN
    He, Jia Wei
    Zhou, Yong
    Peng, Li
    Ahmad, Bashir
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 580 - 597
  • [7] Kilbas AA., 2006, Theory and Applications of Fractional Differential Equations
  • [8] An Lq(Lp)-theory for diffusion equations with space-time nonlocal operators
    Kim, Kyeong-Hun
    Park, Daehan
    Ryu, Junhee
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 376 - 427
  • [9] Kozono H., 2003, Kyushu J. Math, V57, P303, DOI DOI 10.2206/KYUSHUJM.57.303
  • [10] Cauchy problems for Keller-Segel type time-space fractional diffusion equation
    Li, Lei
    Liu, Jian-Guo
    Wang, Lizhen
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (03) : 1044 - 1096