LiDAR-Based classification of objects and terrain

被引:0
|
作者
Garcia, Andres [1 ]
Martineza, Brandon [1 ]
Moroyoquia, Zaid [1 ]
Picos, Kenia [1 ]
Orozco-Rossa, Ulises [1 ]
机构
[1] CETYS Univ, Ave CETYS Univ 4, Tijuana 22210, Baja California, Mexico
来源
OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XVIII | 2024年 / 13136卷
关键词
LiDAR; Computer Vision; Point Cloud; Machine Learning;
D O I
10.1117/12.3028632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the development of a LiDAR-based object classification system using machine learning and signal processing. The proposal explores Support Vector Machines (SVM) and neural networks to classify terrain with the help of a LiDAR that scans an area similarly to how a picture is taken. This project involves the processing of data to generate a point cloud that lets us visualize the scans taken by the Light Detection and Ranging (LiDAR). The dataset was built by taking multiple scans of three types of terrain, flat, grassy, and rocky. This paper shows experimental results of machine learning models built around LiDAR-acquired data and small datasets, it also shows point cloud visualizations and a simple signal processing technique.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A comparison of LiDAR-based DEMs and USGS-sourced DEMs in terrain analysis for knowledge-based digital soil mapping
    Shi, Xun
    Girod, Lyndsey
    Long, Robert
    DeKett, Roger
    Philippe, Jessica
    Burke, Tom
    GEODERMA, 2012, 170 : 217 - 226
  • [32] LIDAR-based Parking Spot Search Algorithm
    Imameev, Dinir
    Zakiev, Aufar
    Tsoy, Tatyana
    Bai, Yang
    Svinin, Mikhail
    Magid, Evgeni
    THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2020), 2021, 11605
  • [33] LiDAR-Based Dense Pedestrian Detection and Tracking
    Wang, Wenguang
    Chang, Xiyuan
    Yang, Jihuang
    Xu, Gaofei
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [34] FEATURE SELECTION FOR LIDAR-BASED GAIT RECOGNITION
    Galai, Bence
    Benedek, Csaba
    2015 INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA UNDERSTANDING (IWCIM), 2015,
  • [35] Paper: Classification of Grass and Forb Species on Riverdike Using UAV LiDAR-Based Structural Indices
    Miura, Naoko
    Koyanagi, Tomoyo F.
    Yamada, Susumu
    Yokota, Shigehiro
    INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2021, 15 (03) : 268 - 273
  • [36] LiDAR-Based Global Localization Using Histogram of Orientations of Principal Normals
    Luo, Lun
    Cao, Si-Yuan
    Sheng, Zehua
    Shen, Hui-Liang
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (03): : 771 - 782
  • [37] LiDAR-Based Negative Obstacle Detection for Unmanned Ground Vehicles in Orchards
    Xie, Peng
    Wang, Hongcheng
    Huang, Yexian
    Gao, Qiang
    Bai, Zihao
    Zhang, Linan
    Ye, Yunxiang
    SENSORS, 2024, 24 (24)
  • [38] Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden
    Achtert, P.
    Tesche, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (03) : 1386 - 1405
  • [39] Multi-modal information fusion for LiDAR-based 3D object detection framework
    Ma, Ruixin
    Yin, Yong
    Chen, Jing
    Chang, Rihao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 7995 - 8012
  • [40] LIDAR-Based Relative Navigation for Unknown Space Objects Using 3D Extended Target Tracking
    Alexander Perruci
    David D. Lee
    The Journal of the Astronautical Sciences, 72 (3)