The monoid of all order-preserving k-extensive full transformations

被引:0
|
作者
Zhao, Ping [1 ,2 ]
Hu, Huabi [1 ]
Qin, Chongwen [3 ]
机构
[1] Guizhou Med Univ, Sch Biol & Engn, Guiyang 550004, Guizhou, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
[3] Guizhou Vocat Coll Agr, Dept Basic Educ, Guiyang 551400, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Transformation semigroup; order-preserving; extensive; idempotent rank; rank; maximal idempotent generated subsemigroup; SEMIGROUPS; ORIENTATION; SUBSEMIGROUPS;
D O I
10.1142/S0219498826501306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 <= k <= n. We denote by O epsilon(n,k) the monoid of all order-preserving k-extensive full transformations on {1,& mldr;,n} ordered in the standard way. In this paper, it is shown that O epsilon(n,k) is not a regular semigroup in general, but it is an abundant semigroup. Moreover, we prove that O epsilon(n,k) is idempotent-generated and compute the idempotent rank and rank of the monoid O epsilon(n,k). Moreover, we determine the maximal idempotent generated subsemigroups of the monoid O epsilon(n,k).
引用
收藏
页数:23
相关论文
共 50 条