ProSub: Probabilistic Open-Set Semi-supervised Learning with Subspace-Based Out-of-Distribution Detection

被引:0
作者
Wallin, Erik [1 ,2 ]
Svensson, Lennart [2 ]
Kahle, Fredrik [2 ]
Hammarstrand, Lars [2 ]
机构
[1] Saab AB, Stockholm, Sweden
[2] Chalmers Univ Technol, Gothenburg, Sweden
来源
COMPUTER VISION - ECCV 2024, PT LXI | 2025年 / 15119卷
基金
瑞典研究理事会;
关键词
Open-set semi-supervised learning; MAXIMUM-LIKELIHOOD;
D O I
10.1007/978-3-031-73030-6_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In open-set semi-supervised learning (OSSL), we consider unlabeled datasets that may contain unknown classes. Existing OSSL methods often use the softmax confidence for classifying data as indistribution (ID) or out-of-distribution (OOD). Additionally, many works for OSSL rely on ad-hoc thresholds for ID/OOD classification, without considering the statistics of the problem. We propose a new score for ID/OOD classification based on angles in feature space between data and an ID subspace. Moreover, we propose an approach to estimate the conditional distributions of scores given ID or OOD data, enabling probabilistic predictions of data being ID or OOD. These components are put together in a framework for OSSL, termed ProSub, that is experimentally shown to reach SOTA performance on several benchmark problems. Our code is available at https://github.com/walline/prosub.
引用
收藏
页码:129 / 147
页数:19
相关论文
共 70 条
[1]  
Ammar M.B., 2024, INT C LEARN REPR
[2]  
Beckman R. J., 1978, Journal of Statistical Computation and Simulation, V7, P253, DOI 10.1080/00949657808810232
[3]   Towards Open Set Deep Networks [J].
Bendale, Abhijit ;
Boult, Terrance E. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1563-1572
[4]  
Berthelot D., 2020, ICLR, V1, P3
[5]  
Cao K., 2022, INT C LEARN REPR
[6]  
Chen YB, 2020, AAAI CONF ARTIF INTE, V34, P3569
[7]   Randaugment: Practical automated data augmentation with a reduced search space [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Shlens, Jonathon ;
Le, Quoc, V .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :3008-3017
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]  
DeVries T, 2017, Arxiv, DOI arXiv:1708.04552
[10]   SSB: Simple but Strong Baseline for Boosting Performance of Open-Set Semi-Supervised Learning [J].
Fan, Yue ;
Kukleva, Anna ;
Dai, Dengxin ;
Schiele, Bernt .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, :16022-16032