Numerical Discretization Methods for Linear Quadratic Control Problems with Time Delays

被引:0
作者
Zhang, Zhanhao [1 ]
Horsholt, Steen [1 ]
Jorgensen, John Bagterp [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
关键词
Linear Quadratic Optimal Control; Numerical Discretization; Time Delay Systems; MATRIX;
D O I
10.1016/j.ifacol.2024.08.447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the numerical discretization methods of the continuous-time linear-quadratic optimal control problems (LQ-OCPs) with time delays. We describe the weight matrices of the LQ-OCPs as differential equations systems, allowing us to derive the discrete equivalent of the continuous-time LQ-OCPs. Three numerical methods are introduced for solving proposed differential equations systems: 1) the ordinary differential equation (ODE) method, 2) the matrix exponential method, and 3) the step-doubling method. We implement a continuous-time model predictive control (CT-MPC) on a simulated cement mill system, and the objective function of the CT-MPC is discretized using the proposed LQ discretization scheme. The closed-loop results indicate that the CT-MPC successfully stabilizes and controls the simulated cement mill system, ensuring the viability and effectiveness of LQ discretization. Copyright (c) 2024 The Authors.
引用
收藏
页码:874 / 880
页数:7
相关论文
共 23 条
[1]   COMPUTING THE ACTION OF THE MATRIX EXPONENTIAL, WITH AN APPLICATION TO EXPONENTIAL INTEGRATORS [J].
Al-Mohy, Awad H. ;
Higham, Nicholas J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02) :488-511
[2]  
Astrom K.J., 2011, Computer- Controlled Systems: Theory and Design, VThird
[3]  
Astrom K.J., 1970, INTRO STOCHASTIC CON
[4]  
Bagterp Jorgensen John, 2007, 2007 American Control Conference, P140
[5]  
Capolei Andrea, 2015, IFAC - Papers Online, V48, P214, DOI [10.1016/j.ifacol.2015.08.034, 10.1016/j.ifacol.2015.08.034]
[6]  
Franklin G.F., 1990, DIGITAL CONTROL DYNA
[7]  
Frison G, 2013, IEEE INTL CONF CONTR, P1117, DOI 10.1109/CCA.2013.6662901
[8]  
Gu K., 2003, CONTROL ENGN SER BIR
[9]  
Hendricks E., 2008, Linear systems control: deterministic and stochastic methods
[10]   The scaling and squaring method for the matrix exponential revisited [J].
Higham, NJ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (04) :1179-1193