Leveraging neutrino flavor physics for supernova model differentiation

被引:0
作者
Newkirk, Lily [1 ,2 ]
Armstrong, Eve [1 ,2 ]
Balantekin, A. Baha [3 ]
Burrows, Adam [4 ]
Isiano, Yennaly F. [1 ]
Jones, Elizabeth K. [5 ]
Laber-Smith, Caroline [3 ]
Patwardhan, Amol V. [1 ,6 ]
Ranginwala, Sarah [1 ]
Torres, Hansen [1 ]
机构
[1] New York Inst Technol, Dept Phys, New York, NY 10023 USA
[2] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA
[3] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA
[4] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[5] Harvey Mudd Coll, Dept Phys, Claremont, CA 91711 USA
[6] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
关键词
DYNAMICAL ESTIMATION; DRIVEN WINDS; OSCILLATIONS; NEURON; EXPLOSION; CAPTURE; STATE;
D O I
10.1103/PhysRevD.111.063027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Neutrino flavor evolution is critical for understanding the physics of dense astrophysical regimes, including core-collapse supernovae (CCSN). Powerful numerical integration codes exist for simulating these environments, yet a complete understanding of the inherent nonlinearity of collective neutrino flavor oscillations and how it fits within the overall framework of these simulations remains an open challenge. For this reason, we continue developing statistical data assimilation (SDA) to infer solutions to the flavor field in a CCSN envelope, given simulated measurements far from the source. SDA is an inference paradigm designed to optimize a model with sparse data. Our model consists of neutrino beams emanating from a CCSN and coherently interacting with each other and with a background of other matter particles in one dimension r. One model feature of high interest is the distribution of those matter particles as a function of radius r, or the "matter potential" V(r)-as it significantly dictates flavor evolution. In this paper, we expand the model beyond previous incarnations, by replacing the monotonically decaying analytic form for V(r) we previously used with a more complex-and more physically plausible-set of profiles derived from a one-dimensional (spherically symmetric) hydrodynamics simulation of a CCSN explosion. We ask whether the SDA procedure can use simulated flavor measurements at physically accessible locations (i.e. in vacuum) to determine the extent to which different matter density profiles through which the neutrinos propagate in the matter-dominated regime are compatible with these measurements. Within the scope of our small-scale model, we find that the neutrino flavor measurements in the vacuum regime are able to discriminate between different matter profiles, and we discuss implications regarding a future galactic CCSN detection.
引用
收藏
页数:14
相关论文
共 68 条
[21]  
Duan HY, 2010, ANNU REV NUCL PART S, V60, P569, DOI 10.1146/annurev.nucl.012.809.104524
[22]  
Evensen G, 2009, DATA ASSIMILATION: THE ENSEMBLE KALMAN FILTER, SECOND EDITION, P273, DOI 10.1007/978-3-642-03711-5_BM2
[23]  
Fano R. M., 1961, Am. J. Phys, V29, P793, DOI [DOI 10.1119/1.1937609, 10.1119/1.1937609]
[24]   CAN A CLOSURE MASS NEUTRINO HELP SOLVE THE SUPERNOVA SHOCK REHEATING PROBLEM [J].
FULLER, GM ;
MAYLE, R ;
MEYER, BS ;
WILSON, JR .
ASTROPHYSICAL JOURNAL, 1992, 389 (02) :517-526
[25]   NEUTRINO CAPTURE AND SUPERNOVA NUCLEOSYNTHESIS [J].
FULLER, GM ;
MEYER, BS .
ASTROPHYSICAL JOURNAL, 1995, 453 (02) :792-809
[26]   SUPERNOVA DYNAMICS AND NUCLEOSYNTHESIS AS A PROBE OF CLOSURE MASS NEUTRINOS [J].
FULLER, GM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 227 (1-5) :149-155
[27]   COSEv: A collective oscillation simulation engine for neutrinos [J].
George, Manu ;
Lin, Chun-Yu ;
Wu, Meng-Ru ;
Liu, Tony G. ;
Xiong, Zewei .
COMPUTER PHYSICS COMMUNICATIONS, 2023, 283
[28]   A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae [J].
George, Peter M. ;
Reed, Anna ;
Desai, Sujal R. ;
Devaraj, Anand ;
Faiez, Tasnim Shahridan ;
Laverty, Sarah ;
Kanwal, Amama ;
Esneau, Camille ;
Liu, Michael K. C. ;
Kamal, Faisal ;
Man, William D. -C. ;
Kaul, Sundeep ;
Singh, Suveer ;
Lamb, Georgia ;
Faizi, Fatima K. ;
Schuliga, Michael ;
Read, Jane ;
Burgoyne, Thomas ;
Pinto, Andreia L. ;
Micallef, Jake ;
Bauwens, Emilie ;
Candiracci, Julie ;
Bougoussa, Mhammed ;
Herzog, Marielle ;
Raman, Lavanya ;
Ahmetaj-Shala, Blerina ;
Turville, Stuart ;
Aggarwal, Anupriya ;
Farne, Hugo A. ;
Dalla Pria, Alessia ;
Aswani, Andrew D. ;
Patella, Francesca ;
Borek, Weronika E. ;
Mitchell, Jane A. ;
Bartlett, Nathan W. ;
Dokal, Arran ;
Xu, Xiao-Ning ;
Kelleher, Peter ;
Shah, Anand ;
Singanayagam, Aran .
SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (671)
[29]  
github, minAone interface with Interior-point Optimizer
[30]   Real-time tracking of neuronal network structure using data assimilation [J].
Hamilton, Franz ;
Berry, Tyrus ;
Peixoto, Nathalia ;
Sauer, Timothy .
PHYSICAL REVIEW E, 2013, 88 (05)