Deep learning based channel equalization method for wireless UV MIMO scattering turbulence channel

被引:0
|
作者
Zhao, Taifei [1 ,2 ]
Chen, Yuqi [1 ]
Sun, Yuxin [1 ,3 ]
Pan, Feixiang [1 ]
机构
[1] Xian Univ Technol, Dept Automat & Informat Engn, Xian 710048, Shaanxi, Peoples R China
[2] Xian Key Lab Wireless Opt Commun & Network Res, Xian 710000, Shaanxi, Peoples R China
[3] Shaanxi Univ, Key Lab Photon Power Devices & Discharge Regulat, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Wireless ultraviolet communication; Scattering channel; Multiple-input multiple-output; Deep learning; Channel equalization; Non-line-of-sight; SIGHT ULTRAVIOLET COMMUNICATION; PERFORMANCE; DIVERSITY;
D O I
10.1016/j.optcom.2025.131697
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Aiming at the problems of traditional equalization methods for ultraviolet (UV) multiple-input multiple-output (MIMO) channels in turbulent environments, such as their strong dependence on a priori knowledge of the channel and the low accuracy in coping with the modeling of complex nonlinear channels, this paper proposes a deep-learning-based equalization method for wireless UV-scattering MIMO channels. The method transforms the MIMO signal into a two-dimensional time series, takes the bidirectional long short-term memory (BiLSTM) with bidirectional sequence feature extraction capability as the core, and supplements it with deep neural network for nonlinear modeling to construct a deep learning network model suitable for UV MIMO channel equalization, so as to realize the accurate recovery of the original MIMO signal. Simulation results show that the scheme exhibits stronger BER and MSE performance compared with the least mean square(LMS) algorithm, recursive least squares(LMS) algorithm, and the equalization scheme based on multilayer long and short-term memory(multiLSTM). At SNR of 9 dB, the scheme reduces the BER by about 67.9%, compared with the equalization scheme based on multi-LSTM, and has stable equalization effects in turbulence environments with different intensities.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Modified state activation functions of deep learning-based SC-FDMA channel equalization system
    Mohamed A. Mohamed
    Hassan A. Hassan
    Mohamed H. Essai
    Hamada Esmaiel
    Ahmed S. Mubarak
    Osama A. Omer
    EURASIP Journal on Wireless Communications and Networking, 2023
  • [42] Deep learning for fast channel estimation in millimeter-wave MIMO systems
    Lyu, Siting
    Li, Xiaohui
    Fan, Tao
    Liu, Jiawen
    Shi, Mingli
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2022, 33 (06) : 1088 - 1095
  • [43] Deep Learning for Massive MIMO Channel State Acquisition and Feedback
    Mahdi Boloursaz Mashhadi
    Deniz Gündüz
    Journal of the Indian Institute of Science, 2020, 100 : 369 - 382
  • [44] Deep Learning for Parametric Channel Estimation in Massive MIMO Systems
    Zia, Muhammad Umer
    Xiang, Wei
    Vitetta, Giorgio M.
    Huang, Tao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (04) : 4157 - 4167
  • [45] Deep Learning for Massive MIMO Channel State Acquisition and Feedback
    Boloursaz Mashhadi, Mahdi
    Gunduz, Deniz
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2020, 100 (02) : 369 - 382
  • [46] A Deep Learning Model for Wireless Channel Quality Prediction
    Herath, J. Dinal
    Seetharam, Anand
    Ramesh, Arti
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [47] Neural-Network-Based Estimation Method for Ultraviolet Scattering Channel Under Turbulence
    Zhao T.
    Lü X.
    Sun Y.
    Zhang S.
    Guangxue Xuebao/Acta Optica Sinica, 2021, 41 (24):
  • [48] Neural-Network-Based Estimation Method for Ultraviolet Scattering Channel Under Turbulence
    Zhao Taifei
    Lu Xinzhe
    Sun Yuxin
    Zhang Shuang
    ACTA OPTICA SINICA, 2021, 41 (24)
  • [49] SupportNet: a Deep Learning Based Channel Equalization Network for Multi-type Multipath Fading
    Chen, Yibo
    Li, Honglian
    Zhuang, Shengbin
    Wei, Xing
    MOBILE NETWORKS & APPLICATIONS, 2023, 29 (6) : 1782 - 1795
  • [50] Deep Learning-Based Channel Estimation for Massive MIMO Systems with Pilot Contamination
    Hirose H.
    Ohtsuki T.
    Gui G.
    IEEE Open Journal of Vehicular Technology, 2021, 2 : 67 - 77