The complexity of elliptic normal bases

被引:0
作者
Panario, Daniel [1 ]
Sall, Mohamadou [2 ]
Wang, Qiang [1 ]
机构
[1] Carleton Univ, Ottawa, ON, Canada
[2] Univ Cheikh Anta Diop Dakar, Dakar, Senegal
基金
加拿大自然科学与工程研究理事会;
关键词
Normal bases; Elliptic periods; Complexity of normal bases;
D O I
10.1016/j.ffa.2024.102570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some specific vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:16
相关论文
共 50 条
[11]   SUBQUADRATIC-TIME ALGORITHMS FOR NORMAL BASES [J].
Giesbrecht, Mark ;
Jamshidpey, Armin ;
Schost, Eric .
COMPUTATIONAL COMPLEXITY, 2021, 30 (01)
[12]   Normal bases of rings of continuous functions constructed with the (qn)-digit principle [J].
Evrard, S. .
ACTA ARITHMETICA, 2008, 135 (03) :219-230
[13]   Normal bases of ray class fields over imaginary quadratic fields [J].
Jung, Ho Yun ;
Koo, Ja Kyung ;
Shin, Dong Hwa .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (1-2) :109-116
[14]   Normal bases of ray class fields over imaginary quadratic fields [J].
Ho Yun Jung ;
Ja Kyung Koo ;
Dong Hwa Shin .
Mathematische Zeitschrift, 2012, 271 :109-116
[15]   FACTORING POLYNOMIALS OVER FINITE-FIELDS USING DIFFERENTIAL-EQUATIONS AND NORMAL BASES [J].
NIEDERREITER, H .
MATHEMATICS OF COMPUTATION, 1994, 62 (206) :819-830
[16]   Low-Complexity Digit-Level Systolic Gaussian Normal Basis Multiplier [J].
Shao, Qiliang ;
Hu, Zhenji ;
Chen, Shaobo ;
Chen, Pingxiuqi ;
Xie, Jiafeng .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (10) :2817-2827
[17]   Common Subexpression Algorithms for Space-Complexity Reduction of Gaussian Normal Basis Multiplication [J].
Azarderakhsh, Reza ;
Jao, David ;
Lee, Hao .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (05) :2357-2369
[18]   Subquadratic Complexity Gaussian Normal Basis Multiplier over GF(2m) Using Addition of HMVP and TMVP [J].
Yang, Chun-Sheng ;
Pan, Jeng-Shyang ;
Lee, Chiou-Yng .
JOURNAL OF INTERNET TECHNOLOGY, 2017, 18 (07) :1597-1603
[19]   Gaussian normal basis multiplier over GF(2m) using hybrid subquadratic-and-quadratic TMVP approach for elliptic curve cryptography [J].
Chiou, Che Wun ;
Sun, Yuh-Sien ;
Lee, Cheng-Min ;
Lin, Jim-Min ;
Chuang, Tai-Pao ;
Lee, Chiou-Yng .
IET CIRCUITS DEVICES & SYSTEMS, 2017, 11 (06) :579-588
[20]   Elliptic periods for finite fields [J].
Couveignes, Jean-Marc ;
Lercier, Reynald .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (01) :1-22