Noise-reducing quantum key distribution

被引:0
作者
Zhang, Haoran [1 ]
Li, Wei [2 ]
He, Ruihua [1 ]
Zhang, Yan [1 ]
Xu, Feihu [3 ,4 ,5 ]
Gao, Weibo [1 ,6 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore, Singapore
[2] Univ Shanghai Sci & Technol, Inst Photon Chips, Shanghai, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Sch Phys Sci, Hefei, Peoples R China
[4] Univ Sci & Technol China, Shanghai Res Ctr Quantum Sci, Shanghai, Peoples R China
[5] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai, Peoples R China
[6] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[7] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
quantum key distribution; noise-reducing strategies; polarization encoding; phase encoding; free space; twin-field; satellite QKD; POLARIZATION MODE DISPERSION; FREE-SPACE; DISTRIBUTION-SYSTEM; FIBER; DISTANCE; FIELD; ENTANGLEMENT; SECURITY; DAYLIGHT; ROBUST;
D O I
10.1088/1361-6633/ad9505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) is a swiftly advancing field with the great potential to be ubiquitously adopted in quantum communication applications, attributed to its unique capability to offer ultimate end-to-end theoretical security. However, when transitioning QKD from theory to practice, environmental noise presents a significant impediment, often undermining the real-time efficacy of secure key rates. To uphold the operation of QKD systems, a myriad of protocols and experimental designs have been proposed to counteract the effects of noises. Even with real-time variations, the primary component of environmental noise can be modeled as a unitary evolution or background noise, which can be compensated or reduced with various noise-reducing schemes. This review provides an overview of design strategies for reducing noises in practical QKD systems under various circumstances. These strategies are evaluated based on their principles and suitability in real-world applications. Through this review, we aim to provide readers with a clear understanding of the logic behind these noise-reducing QKD designs, facilitating a smoother start of research and engineering in this field.
引用
收藏
页数:24
相关论文
共 235 条
  • [1] Analysis of satellite-to-ground quantum key distribution with adaptive optics
    Acosta, V. Marulanda
    Dequal, D.
    Schiavon, M.
    Montmerle-Bonnefois, A.
    Lim, C. B.
    Conan, J-M
    Diamanti, E.
    [J]. NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [2] Simple quantum key distribution with qubit based synchronization and a self-compensating polarization encoder
    Agnesi, Costantino
    Avesani, Marco
    Calderaro, Luca
    Stanco, Andrea
    Foletto, Giulio
    Zahidy, Mujtaba
    Scriminich, Alessia
    Vedovato, Francesco
    Vallone, Giuseppe
    Villoresi, Paolo
    [J]. OPTICA, 2020, 7 (04): : 284 - 290
  • [3] All-fiber self-compensating polarization encoder for quantum key distribution
    Agnesi, Costantino
    Avesani, Marco
    Stanco, Andrea
    Villoresi, Paolo
    Vallone, Giuseppe
    [J]. OPTICS LETTERS, 2019, 44 (10) : 2398 - 2401
  • [4] [Anonymous], 1984, P IEEE INT C COMP SY
  • [5] [Anonymous], 2010, J. Lightwave Technol, DOI [DOI 10.1109/JLT.2010.2056673, 10.1109/JLT.2010.2056673]
  • [6] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [7] Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics
    Avesani, M.
    Calderaro, L.
    Schiavon, M.
    Stanco, A.
    Agnesi, C.
    Santamato, A.
    Zahidy, M.
    Scriminich, A.
    Foletto, G.
    Contestabile, G.
    Chiesa, M.
    Rotta, D.
    Artiglia, M.
    Montanaro, A.
    Romagnoli, M.
    Sorianello, V
    Vedovato, F.
    Vallone, G.
    Villoresi, P.
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [8] No signaling and quantum key distribution
    Barrett, J
    Hardy, L
    Kent, A
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (01)
  • [9] Security of two-way quantum key distribution
    Beaudry, Normand J.
    Lucamarini, Marco
    Mancini, Stefano
    Renner, Renato
    [J]. PHYSICAL REVIEW A, 2013, 88 (06):
  • [10] Progress in satellite quantum key distribution
    Bedington, Robert
    Arrazola, Juan Miguel
    Ling, Alexander
    [J]. NPJ QUANTUM INFORMATION, 2017, 3