Volitional Regulation and Transferable Patterns of Midbrain Oscillations

被引:0
作者
Lu, Hung-Yun [1 ]
Zhao, Yi [1 ]
Stealey, Hannah M. [1 ]
Barnett, Cole R. [1 ]
Tobler, Philippe N. [2 ,3 ,4 ]
Santacruz, Samantha R. [1 ,5 ,6 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Zurich, Dept Econ, CH-8006 Zurich, Switzerland
[3] Univ Zurich, Neurosci Ctr Zurich, CH-8006 Zurich, Switzerland
[4] Swiss Fed Inst Technol Zurich, CH-8006 Zurich, Switzerland
[5] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[6] Univ Texas Austin, Interdisciplinary Neurosci Program, Austin, TX 78712 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
midbrain; neurofeedback; ventral tegmental area; DOPAMINE NEURONS; BRAIN; PREDICTION; PROGRESS; STRESS;
D O I
10.1523/JNEUROSCI.1808-24.2025
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dopaminergic brain areas are crucial for cognition and their dysregulation is linked to neuropsychiatric disorders typically treated with pharmacological interventions. These treatments often have side effects and variable effectiveness, underscoring the need for alternatives. We introduce the first demonstration of neurofeedback using local field potentials (LFP) from the ventral tegmental area (VTA). This approach leverages the real-time temporal resolution of LFP and ability to target deep brain. In our study, two male rhesus macaque monkeys (Macaca mulatta) learned to regulate VTA beta power using a customized normalized metric to stably quantify VTA LFP signal modulation. The subjects demonstrated flexible and specific control with different strategies for specific frequency bands, revealing new insights into the plasticity of VTA neurons contributing to oscillatory activity that is functionally relevant to many aspects of cognition. Excitingly, the subjects showed transferable patterns, a key criterion for clinical applications beyond training settings. This work provides a foundation for neurofeedback-based treatments, which may be a promising alternative to conventional approaches and open new avenues for understanding and managing neuropsychiatric disorders.
引用
收藏
页数:13
相关论文
共 53 条
  • [1] Inferring entire spiking activity from local field potentials
    Ahmadi, Nur
    Constandinou, Timothy G.
    Bouganis, Christos-Savvas
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Can We Predict Who Will Respond to Neurofeedback? A Review of the Inefficacy Problem and Existing Predictors for Successful EEG Neurofeedback Learning
    Alkoby, O.
    Abu-Rmileh, A.
    Shriki, O.
    Todder, D.
    [J]. NEUROSCIENCE, 2018, 378 : 155 - 164
  • [3] Selecting the signals for a brain-machine interface
    Andersen, RA
    Musallam, S
    Pesaran, B
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2004, 14 (06) : 720 - 726
  • [4] Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates
    Barrese, James C.
    Rao, Naveen
    Paroo, Kaivon
    Triebwasser, Corey
    Vargas-Irwin, Carlos
    Franquemont, Lachlan
    Donoghue, John P.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2013, 10 (06)
  • [5] What does dopamine mean?
    Berke, Joshua D.
    [J]. NATURE NEUROSCIENCE, 2018, 21 (06) : 787 - 793
  • [6] Dopamine in Motivational Control: Rewarding, Aversive, and Alerting
    Bromberg-Martin, Ethan S.
    Matsumoto, Masayuki
    Hikosaka, Okihide
    [J]. NEURON, 2010, 68 (05) : 815 - 834
  • [7] The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes
    Buzsaki, Gyoergy
    Anastassiou, Costas A.
    Koch, Christof
    [J]. NATURE REVIEWS NEUROSCIENCE, 2012, 13 (06) : 407 - 420
  • [8] Neurofeedback Training of Gamma Oscillations in Monkey Primary Visual Cortex
    Chauviere, L.
    Singer, W.
    [J]. CEREBRAL CORTEX, 2019, 29 (11) : 4785 - 4802
  • [9] Cohen J., 1988, STAT POWER ANAL BEHA
  • [10] Inducing Gamma Oscillations and Precise Spike Synchrony by Operant Conditioning via Brain-Machine Interface
    Engelhard, Ben
    Ozeri, Nofar
    Israel, Zvi
    Bergman, Hagai
    Vaadia, Eilon
    [J]. NEURON, 2013, 77 (02) : 361 - 375