Multiplicity and Concentration Results for Some Fractional Double Phase Choquard Equation with Exponential Growth

被引:1
作者
Liang, Sihua [1 ]
Pucci, Patrizia [2 ]
Nguyen, Thin Van [3 ,4 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun, Peoples R China
[2] Univ Perugia, Dept Math & Comp Sci, Perugia, Italy
[3] Thai Nguyen Univ Educ, Dept Math, Thai Nguyen, Vietnam
[4] Thang Long Univ, Thang Long Inst Math & Appl Sci, Nghiem Xuan Yem, Hanoi, Vietnam
基金
中国国家自然科学基金;
关键词
fractional double phase operator; critical exponential growth; mountain pass theorem; Trudinger-Moser inequality; variational method; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; UNIQUENESS; GUIDE;
D O I
10.1177/09217134251319160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the fractional Choquard equation in R-N epsilon(ps)(-Delta)(p)(s)u+epsilon(qs)(-Delta)(q)(s)u+V(x)(|u|(p-2)u+|u|q-2u)=epsilon(mu-N)[|x|(-mu)*F(u)]f(u), where epsilon is a positive parameter, N=ps,2 <= p<q,s is an element of(0,1),0<mu<N. The nonlinear function f has an exponential growth at infinity and the potential function V is continuous in RN and satisfies suitable natural conditions. Using the Ljusternik-Schnirelmann category theory and variational methods, we establish multiplicity and concentration of positive solutions for small values of the parameter epsilon>0.
引用
收藏
页码:1209 / 1256
页数:48
相关论文
共 69 条
[31]   The effect of the domain topology on the number of solutions of fractional Laplace problems [J].
Figueiredo, Giovany M. ;
Bisci, Giovanni Molica ;
Servadei, Raffaella .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
[32]   NONSPREADING WAVE-PACKETS FOR THE CUBIC SCHRODINGER-EQUATION WITH A BOUNDED POTENTIAL [J].
FLOER, A ;
WEINSTEIN, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :397-408
[33]   Theory of electrical breakdown in ionic crystals [J].
Frohlich, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1937, 160 (A901) :0230-0241
[34]   ELECTRONS IN LATTICE FIELDS [J].
FROHLICH, H .
ADVANCES IN PHYSICS, 1954, 3 (11) :325-&
[35]   TWO-WEIGHT NORM INEQUALITIES FOR ROUGH FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES [J].
Ho, Kwok-Pun .
OPUSCULA MATHEMATICA, 2024, 44 (01) :67-77
[36]   NEWTONIAN QUANTUM-GRAVITY [J].
JONES, KRW .
AUSTRALIAN JOURNAL OF PHYSICS, 1995, 48 (06) :1055-1081
[37]   Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation [J].
Lan, Jiali ;
He, Xiaoming ;
Meng, Yuxi .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
[38]   Multiple solutions for a class of fractional quasi-linear equations with critical exponential growth in RN [J].
Li, Qin ;
Yang, Zuodong .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (07) :969-983
[39]  
Lieb E., 2001, Analysis
[40]  
LIEB EH, 1977, STUD APPL MATH, V57, P93