Multiplicity and Concentration Results for Some Fractional Double Phase Choquard Equation with Exponential Growth

被引:1
作者
Liang, Sihua [1 ]
Pucci, Patrizia [2 ]
Nguyen, Thin Van [3 ,4 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun, Peoples R China
[2] Univ Perugia, Dept Math & Comp Sci, Perugia, Italy
[3] Thai Nguyen Univ Educ, Dept Math, Thai Nguyen, Vietnam
[4] Thang Long Univ, Thang Long Inst Math & Appl Sci, Nghiem Xuan Yem, Hanoi, Vietnam
基金
中国国家自然科学基金;
关键词
fractional double phase operator; critical exponential growth; mountain pass theorem; Trudinger-Moser inequality; variational method; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; UNIQUENESS; GUIDE;
D O I
10.1177/09217134251319160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the fractional Choquard equation in R-N epsilon(ps)(-Delta)(p)(s)u+epsilon(qs)(-Delta)(q)(s)u+V(x)(|u|(p-2)u+|u|q-2u)=epsilon(mu-N)[|x|(-mu)*F(u)]f(u), where epsilon is a positive parameter, N=ps,2 <= p<q,s is an element of(0,1),0<mu<N. The nonlinear function f has an exponential growth at infinity and the potential function V is continuous in RN and satisfies suitable natural conditions. Using the Ljusternik-Schnirelmann category theory and variational methods, we establish multiplicity and concentration of positive solutions for small values of the parameter epsilon>0.
引用
收藏
页码:1209 / 1256
页数:48
相关论文
共 69 条
[1]   An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in RN and Its Applications [J].
Adimurthi ;
Yang, Yunyan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (13) :2394-2426
[2]  
Alves C. O., 2009, COMMUN PUR APPL ANAL, V18, P2045
[3]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[4]   Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 [J].
Alves, Claudianor O. ;
Cassani, Daniele ;
Tarsi, Cristina ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1933-1972
[5]   Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method [J].
Alves, Claudianor O. ;
Yang, Minbo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (01) :23-58
[6]   Multiple concentrating solutions for a fractional (p, q)-Choquard equation [J].
Ambrosio, Vincenzo .
ADVANCED NONLINEAR STUDIES, 2024, 24 (02) :510-541
[7]   Fractional (p, q)-Schrodinger Equations with Critical and Supercritical Growth [J].
Ambrosio, Vincenzo .
APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 86 (03)
[8]   A strong maximum principle for the fractional (p, q)-Laplacian operator [J].
Ambrosio, Vincenzo .
APPLIED MATHEMATICS LETTERS, 2022, 126
[9]   Multiplicity of positive solutions for afractional p&q-Laplacian problem in RN [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
[10]  
Ambrosio V, 2021, Z ANGEW MATH PHYS, V72, DOI 10.1007/s00033-020-01466-7