Multiplicity and Concentration Results for Some Fractional Double Phase Choquard Equation with Exponential Growth

被引:0
作者
Liang, Sihua [1 ]
Pucci, Patrizia [2 ]
Nguyen, Thin Van [3 ,4 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun, Peoples R China
[2] Univ Perugia, Dept Math & Comp Sci, Perugia, Italy
[3] Thai Nguyen Univ Educ, Dept Math, Thai Nguyen, Vietnam
[4] Thang Long Univ, Thang Long Inst Math & Appl Sci, Nghiem Xuan Yem, Hanoi, Vietnam
基金
中国国家自然科学基金;
关键词
fractional double phase operator; critical exponential growth; mountain pass theorem; Trudinger-Moser inequality; variational method; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; UNIQUENESS; GUIDE;
D O I
10.1177/09217134251319160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the fractional Choquard equation in R-N epsilon(ps)(-Delta)(p)(s)u+epsilon(qs)(-Delta)(q)(s)u+V(x)(|u|(p-2)u+|u|q-2u)=epsilon(mu-N)[|x|(-mu)*F(u)]f(u), where epsilon is a positive parameter, N=ps,2 <= p<q,s is an element of(0,1),0<mu<N. The nonlinear function f has an exponential growth at infinity and the potential function V is continuous in RN and satisfies suitable natural conditions. Using the Ljusternik-Schnirelmann category theory and variational methods, we establish multiplicity and concentration of positive solutions for small values of the parameter epsilon>0.
引用
收藏
页数:48
相关论文
共 69 条