Multiplicity and Concentration Results for Some Fractional Double Phase Choquard Equation with Exponential Growth
被引:0
作者:
Liang, Sihua
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Normal Univ, Coll Math, Changchun, Peoples R ChinaChangchun Normal Univ, Coll Math, Changchun, Peoples R China
Liang, Sihua
[1
]
Pucci, Patrizia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Perugia, Dept Math & Comp Sci, Perugia, ItalyChangchun Normal Univ, Coll Math, Changchun, Peoples R China
Pucci, Patrizia
[2
]
Nguyen, Thin Van
论文数: 0引用数: 0
h-index: 0
机构:
Thai Nguyen Univ Educ, Dept Math, Thai Nguyen, Vietnam
Thang Long Univ, Thang Long Inst Math & Appl Sci, Nghiem Xuan Yem, Hanoi, VietnamChangchun Normal Univ, Coll Math, Changchun, Peoples R China
Nguyen, Thin Van
[3
,4
]
机构:
[1] Changchun Normal Univ, Coll Math, Changchun, Peoples R China
[2] Univ Perugia, Dept Math & Comp Sci, Perugia, Italy
In this paper, we study the fractional Choquard equation in R-N epsilon(ps)(-Delta)(p)(s)u+epsilon(qs)(-Delta)(q)(s)u+V(x)(|u|(p-2)u+|u|q-2u)=epsilon(mu-N)[|x|(-mu)*F(u)]f(u), where epsilon is a positive parameter, N=ps,2 <= p<q,s is an element of(0,1),0<mu<N. The nonlinear function f has an exponential growth at infinity and the potential function V is continuous in RN and satisfies suitable natural conditions. Using the Ljusternik-Schnirelmann category theory and variational methods, we establish multiplicity and concentration of positive solutions for small values of the parameter epsilon>0.