Novel Approach for Enhancing Ionic Conductivity of Na Superionic Conductor-Type Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Prepared Using Hydrothermal Method

被引:0
|
作者
Mohanty, Debabrata [1 ]
Lin, Yung-Cheng [1 ]
Nayak, Sagar Kumar [2 ]
Hung, I-Ming [1 ,3 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, 135 Yuan Tung Rd, Chung Li City 32003, Taiwan
[2] NETZSCH Analyzing & Testing, Kolkata 700107, West Bengal, India
[3] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 70101, Taiwan
关键词
hydrothermal synthesis; ionic conductivity; LATP; LiOH; NASICON; solid electrolyte; LITHIUM BATTERIES; ANODE; PROGRESS;
D O I
10.1007/s11665-024-10535-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the hydrothermal synthesis technique was employed to successfully fabricate Li1.2Al0.2Ti1.7(PO4)2 (LATP), a solid electrolyte renowned for its outstanding electrochemical properties. The research aimed to identify optimal synthesis conditions for LATP, achieving material with exceptional ionic conductivity and high purity. The optimal conditions included sintering the material with an additional 15% lithium hydroxide at 850 degrees C, which significantly enhanced the ionic conductivity to 3.01 x 10-4 S cm-1. This approach also resulted in a notable purity enhancement, exceeding 92%, and increased sample density by 36% compared to samples sintered without protective powder. The use of lithium hydroxide as a protective powder during sintering was crucial in curbing impurity formation, minimizing lithium loss, and enhancing overall densification. These findings underscore the potential of LATP solid electrolytes synthesized under these conditions for advanced energy storage technologies.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Preparation and evaluation of high lithium ion conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte obtained using a new solution method
    Ma, Furui
    Zhao, Erqing
    Zhu, Shaoyin
    Yan, Wenchao
    Sun, Deye
    Jin, Yongcheng
    Nan, Cewen
    SOLID STATE IONICS, 2016, 295 : 7 - 12
  • [32] Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7(PO4)3 Ceramics
    Waetzig, Katja
    Heubner, Christian
    Kusnezoff, Mihails
    CRYSTALS, 2020, 10 (05):
  • [33] Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte fabricated from bimodal powder precursor
    Xu, Xieyu
    Kirianova, Alina, V
    Evdokimov, Pavel, V
    Liu, Yangyang
    Jiao, Xingxing
    Volkov, Valentin S.
    Goodilin, Evgeny A.
    Veselova, Irina A.
    Putlayev, Valery I.
    Kapitanova, Olesya O.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (14) : 6170 - 6179
  • [34] Comparing the Effects of Mechanical Activation and Fusible Additives on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3
    Shindrov, A. A.
    Kosova, N. V.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2023, 59 (03) : 222 - 228
  • [35] Preparation of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte via a sol-gel method using various Ti sources
    Kotobuki, Masashi
    Koishi, Masaki
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2020, 8 (03): : 891 - 897
  • [36] Preparation of Three-Dimensional Porous Li1.3Al0.3Ti1.7(PO4)3 Solid-state Electrolyte by Gelcasting Method
    Huang Z.
    Zhao W.
    Wang C.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2019, 47 (10): : 1351 - 1356
  • [37] Foaming suppression during the solid-state synthesis of the Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Shindrov, Alexander A.
    Skachilova, Maria G.
    Gerasimov, Konstantin B.
    Kosova, Nina, V
    SOLID STATE SCIENCES, 2024, 154
  • [38] Isotropic negative thermal expansion of a Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Ghosh, Sayan
    Sudakar, C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (42) : 29271 - 29277
  • [39] Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
    Duluard, Sandrine
    Paillassa, Aude
    Puech, Laurent
    Vinatier, Philippe
    Turq, Viviane
    Rozier, Patrick
    Lenormand, Pascal
    Taberna, Pierre-Louis
    Simon, Patrice
    Ansart, Florence
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) : 1145 - 1153
  • [40] Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Yu, Shicheng
    Mertens, Andreas
    Gao, Xin
    Gunduz, Deniz Cihan
    Schierholz, Roland
    Benning, Svenja
    Hausen, Florian
    Mertens, Josef
    Kungl, Hans
    Tempel, Hermann
    Eichel, Ruediger-A.
    FUNCTIONAL MATERIALS LETTERS, 2016, 9 (05)