Prediction of bank credit customers churn based on machine learning and interpretability analysis

被引:0
|
作者
Li, Ying [1 ]
Yan, Keyue [2 ]
机构
[1] Beijing Inst Technol Zhuhai, Coll Global Talents, Zhuhai, Peoples R China
[2] Univ Macau, Choi Kai Yau Coll, Zhuhai, Macau, Peoples R China
来源
DATA SCIENCE IN FINANCE AND ECONOMICS | 2025年 / 5卷 / 01期
关键词
customer churn; machine learning; SHAP; causal inference; R-learner;
D O I
10.3934/DSFE.2025002
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Nowadays, traditional machine learning methods for building predictive models of credit card customer churn are no longer sufficient for effective customer management. Additionally, interpreting these models has become essential. This study aims to balance the data using sampling techniques to forecast whether a customer will churn, combine machine learning methods to build a comprehensive customer churn prediction model, and select the model with the best performance. The optimal model is then interpreted using the Shapley Additive exPlanations (SHAP) values method to analyze the correlation between each independent variable and customer churn. Finally, the causal impacts of these variables on customer churn are explored using the R-learner causal inference method. The results show that the complete customer churn prediction model using Extreme Gradient Boosting (XGBoost) achieved significant performance, with accuracy, precision, recall, F1 score, and area under the curve (AUC) all reaching 97%. The SHAP values method and causal inference method demonstrate that several variables, such as the customer's total number of transactions, the total transaction amount, the total number of bank products, and the changes in both the amount and the number of transactions from the fourth quarter to the first quarter, have an impact on customer churn, providing a theoretical foundation for customer management.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Churn Prediction Analysis by Combining Machine Learning Algorithms and Best Features Exploration
    Elyusufi, Yasyn
    Ait Kbir, M'hamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 615 - 622
  • [12] CHURN PREDICTION - A COMPARATIVE ANALYSIS WITH SUPERVISED MACHINE LEARNING ALGORITHMS
    Gangadharan, Chika K.
    Alex, Roshni
    Sabu, M. K.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (12): : 3049 - 3060
  • [13] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [14] A survey on machine learning methods for churn prediction
    Louis Geiler
    Séverine Affeldt
    Mohamed Nadif
    International Journal of Data Science and Analytics, 2022, 14 : 217 - 242
  • [15] Unveiling the Power of Social Influence: A Machine Learning Framework for Churn Prediction With Network Analysis
    Amiri, Babak
    Hosseini, Seyed Hasan
    IEEE ACCESS, 2024, 12 : 71271 - 71285
  • [16] Regression-Based Machine Learning Framework for Customer Churn Prediction in Telecommunication Industry
    Ele, Sylvester Igbo
    Alo, Uzoma Rita
    Nweke, Henry Friday
    Ofem, Ajah Ofem
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (05) : 1046 - 1055
  • [17] Inferring Machine Learning Based Parameter Estimation for Telecom Churn Prediction
    Pamina, J.
    Raja, J. Beschi
    Peter, S. Sam
    Soundarya, S.
    Bama, S. Sathya
    Sruthi, M. S.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 257 - 267
  • [18] Credit Risk Prediction Based on Machine Learning Methods
    Li, Yu
    14TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND EDUCATION (ICCSE 2019), 2019, : 1011 - 1013
  • [20] Multi-Level Machine Learning Model to Improve the Effectiveness of Predicting Customers Churn Banks
    Ngo, Van-Binh
    Vu, Van-Hieu
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2024, 24 (03) : 3 - 20